Creating Multiple Fractures in Cemented Horizontal Laterals: An Efficient Way to Improve Productivity of Tight Carbonate Formations in Saudi Arabia

Author(s):  
Zillur Rahim ◽  
Hamoud Al-Anazi ◽  
Adnan Kanan ◽  
Rifat Eduardovich Kayumov
2021 ◽  
Vol 73 (01) ◽  
pp. 20-22
Author(s):  
Trent Jacobs

In the midst of an industry downturn last year, the Abu Dhabi National Oil Company (ADNOC) reached a new oil production ceiling of 4 million B/D. The UAE’s largest producer has no intentions of slowing down. By decade’s end, ADNOC expects to have raised its maximum daily output by another million barrels. To cross that milestone, the company has set its sights on mastering the tight, thin, and unconventional formations that dot the UAE’s subsurface landscape. One of the places where such developments are hoped to unfold soon is known as Field Q. Found in southeastern Abu Dhabi, Field Q sits above a tight carbonate reservoir that holds an estimated 600 million bbl of oil. But with a permeability ranging from 1 to 3 millidarcy and poor vertical communication, the reservoir and its barrels have proven difficult to cultivate economically - until recently. ADNOC has published new details of its first onshore pilot of a “fishbone stimulation” that involved using more than a hundred hollow needles to pierce as far as 40 ft into the reservoir rock. The additional drainage netted by the fishbone needles boosted production threefold in the test well, as compared with its traditionally completed neighbors on the same pad. ADNOC ran the pilot in the summer of 2019 and by the end of the year saw enough production data to launch a wider 10-well pilot that remains underway. Based on a longer-term data set from these wells, the company will decide whether to leap into a fieldwide deployment of the niche completions technology. In the meantime, the petrotechnical team in charge of the test projects have issued roundly positive reviews of the fishbone technique in two recently presented technical papers (SPE 202636; SPE 203086) from the Abu Dhabi International Petroleum Exhibition & Conference (ADIPEC). “There is a chance that the fishbone-stimulated wells can avoid the drilling of multiple wells targeting different sublayers in the same zone,” said Rama Rao Rachapudi, listing one of several of the technology’s advantages over other approaches that were considered. The senior petroleum engineer with ADNOC, who is one of several authors of the papers that cover both the drilling and completions aspects of the pilot, shared during ADIPEC that his onshore team found motivation to test the technology after bringing in a batch of dis-mal appraisal wells. The fishbone system, also known as multilateral jetting stimulation technology, has been a specialized application ever since it was introduced just over a decade ago. Underscoring the potential impact of the current round of pilots on the technology’s adoption rate, ADNOC noted there were only around 30 worldwide fishbone deployments prior to this project. Most of those have been in the Middle East’s naturally fractured and layered carbonate formations - just like those of Field Q.


2010 ◽  
Author(s):  
Mosaad Hamdallah Omar ◽  
Ahmed Nouman Bouyabes ◽  
Boon Cheng Cheong ◽  
Mansoor Ali Rampurawala

2010 ◽  
Author(s):  
C.A. Franco ◽  
J.R. Solares ◽  
N.S. Al-Shammari ◽  
M.M. Al-Harbi ◽  
E.A. Alabbad ◽  
...  

2018 ◽  
Author(s):  
Youngho Jang ◽  
Hyunsang Yoo ◽  
Wonmo Sung ◽  
Jeonghwan Lee ◽  
Won Suk Lee

2017 ◽  
Author(s):  
Pablo Guizada ◽  
Kausik Saikia ◽  
Abdul Aziz Ahmad Azly ◽  
Bela Eperjesi

SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2373-2400
Author(s):  
Khaled Aldhayee ◽  
Mahmoud T. Ali ◽  
Hisham A. Nasr-El-Din

Summary Closed-fracture acidizing (CFA) is a well-stimulation technique that can be applied to stimulate carbonate reservoirs at the end of acid-fracturing treatments. In CFA, acid is injected into the closed fracture at rates lower than the fracturing pressure to enhance the fracture conductivity. The objective of this study is to develop a robust model that can capture the dissolution process and wormhole-propagation phenomena that occur during CFA. This work develops a CFA model using computational-fluid-dynamics (CFD) techniques coupled with a two-scale continuum model that can predict accurately the reactive-flow mechanisms of hydrochloric acid (HCl) in carbonate formations. The developed CFA model is constructed and populated with the actual porosity-distribution profiles of tight carbonates. The model was tested against the experimental work performed on a fracture-conductivity apparatus. Sensitivity analysis is performed for several parameters that affect the performance of CFA in tight-carbonate formations. The developed model has successfully captured the dissolution patterns and wormhole-propagation phenomena that occur during CFA. In calcite formations, high temperatures promote acid leakoff into the formation, resulting in inefficient fracture stimulation. On the contrary, low temperatures reduce the overall reaction kinetics and attenuate the HCl reaction with calcite. Also, simulation results show that high acid concentration is favorable in treating low-conductivity fractures. In dolomite formations, it is essential to adapt a strong-acid system with an extended treatment duration to ensure efficient acid stimulation to the closed fractures. This paper provides a simulation study of the CFA process in a carbonates formation by establishing a 3D CFD model using the two-scale continuum approach. Fracture-surface etching and the associated acid-wormhole behavior during CFA are experimentally validated. This study optimizes the acid volumes and injection rates that can be used in conducting CFA.


Sign in / Sign up

Export Citation Format

Share Document