acid fracturing
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 124)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Abdullah Al-Enezi ◽  
Mohammed Al-Othman ◽  
Mishari Al-Shtail ◽  
Yousef Al-Sadeeqi ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The unconventional Bahrah field is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly heterogeneous tight carbonate intervals with poor reservoir quality and curtailed mobility. Due to this, the field development strategies have prioritized well completion using horizontal acid fracturing technology over vertical wells. During fracturing, the acid system tends to form highly conductive channels in the formation. Most of the fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, the fracturing treatment options dwindle significantly, thus reservoir stimulation results are not optimum in each stage. Achieving complete wellbore coverage is a challenge for any acid frac treatment performed in long lateral with variations in reservoir characteristics. The multistage acid fracturing using Integrated Far-field Diversion (IFD) is performed using selective openhole completion, enabling mechanical annular segmentation of the wellbore using swellable packers and sliding sleeves. The mechanical as well as chemical diversion in IFD methodology is highly important to the overall stimulation success. The technique includes pumping multiple self-degrading particle sizes, considering the openhole annular space and wide presence of natural fractures, followed by in-situ HCL based crosslinked system employed for improving individual stage targets. A biomodal strategy is employed wherein larger particles are supplemented with smaller that can bridge pore throats of the larger particles and have the desired property of rigidity and develop a level of suppleness once exposed to reservoir conditions. The IFD diversion shifts the fracture to unstimulated areas to create complex fractures that increase reservoir contact volume and improving overall conductivity. This paper examines IFD in acid fracturing and describes the crucial diversion strategy. Unlike available diverters used in other fields, the particulates are unaffected at low pH values and in live acids. Proper agent selection and combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. The optimization and designing of the IFD diversion in each stage plays a key role and has helped to effectively plug fractures and realize segmentation. Concentration of diversion agents, volume of fluid system and open-hole stage length sensitivity plays vital role for the success of this treatment. The application of IFD methodology is tuned as fit-for-purpose to address the unique challenges of well operations, formation technical difficulties, high-stakes economics, and untapped high potential from this unconventional reservoir. A direct result of this acid fracturing treatment is that the post-operation data showed high contribution of all fractured zones along the section in sustained manner. Furthermore, this methodology can be considered as best practice for application in unconventional challenges in other fields.


2022 ◽  
Author(s):  
Khalid Fahad Almulhem ◽  
Ataur Malik ◽  
Mustafa Ghazwi

Abstract Acid Fracturing has been one of the most effective stimulation technique applied in the carbonate formations to enhance oil and gas production. The traditional approach to stimulate the carbonate reservoir has been to pump crosslinked gel and acid blends such as plain 28% HCL, emulsified acid (EA) and in-situ gelled acid at fracture rates in order to maximize stimulated reservoir volume with desired conductivity. With the common challenges encountered in fracturing carbonate formations, including high leak-off and fast acid reaction rates, the conventional practice of acid fracturing involves complex pumping schemes of pad, acid and viscous diverter fluid cycles to achieve fracture length and conductivity targets. A new generation of Acid-Based Crosslinked (ABC) fluid system has been deployed to stimulate high temperature carbonate formations in three separate field trials aiming to provide rock-breaking viscosity, acid retardation and effective leak-off control. The ABC fluid system has been progressively introduced, initially starting as diverter / leak off control cycles of pad and acid stages. Later it was used as main acid-based fluid system for enhancing live acid penetration, diverting and reducing leakoff as well as keeping the rock open during hydraulic fracturing operation. Unlike in-situ crosslinked acid based system that uses acid reaction by products to start crosslinking process, the ABC fluid system uses a unique crosslinker/breaker combination independent of acid reaction. The system is prepared with 20% hydrochloric acid and an acrylamide polymer along with zirconium metal for delayed crosslinking in unspent acid. The ABC fluid system is aimed to reduced three fluid requirements to one by eliminating the need for an intricate pumping schedule that otherwise would include: a non-acid fracturing pad stage to breakdown the formation and generate the targeted fracture geometry; a retarded emulsified acid system to achieve deep penetrating, differently etched fractures, and a self-diverting agent to minimize fluid leak-off. This paper describes all efforts behind the introduction of this novel Acid-Based Crossliked fluid system in different field trials. Details of the fluid design optimization are included to illustrate how a single system can replace the need for multiple fluids. The ABC fluid was formulated to meet challenging bottom-hole formation conditions that resulted in encouraging post treatment well performance.


2022 ◽  
Vol 208 ◽  
pp. 109409
Author(s):  
Kunpeng Zhang ◽  
Bing Hou ◽  
Mian Chen ◽  
Changlin Zhou ◽  
Fei Liu

2022 ◽  
pp. 387-419
Author(s):  
Frank F. Chang
Keyword(s):  

2021 ◽  
Author(s):  
Frank Figueroa ◽  
Gustavo Mejías ◽  
José Frías ◽  
Bonifacio Brito ◽  
Diana Velázquez ◽  
...  

Abstract Enhanced hydrocarbon production in a high-pressure/high-temperature (HP/HT) carbonate reservoir, involves generating highly conductive channels using efficient diversion techniques and custom-designed acid-based fluid systems. Advanced stimulation design includes injection of different reactive fluids, which involves challenges associated with controlling fluid leak-off, implementing optimal diversion techniques, controlling acid reaction rates to withstand high-temperature conditions, and designing appropriate pumping schedules to increase well productivity and sustainability of its production through efficient acid etching and uniform fluid distribution in the pay zone. Laboratory tests such as rock mineralogy, acid etching on core samples and solubility tests on formation cuttings were performed to confirm rock dissolving capability, and to identify stimulation fluids that could generate optimal fracture lengths and maximus etching in the zone of interest while corrosion test was run to ensure corrosion control at HT conditions. After analyzing laboratory tests results, acid fluid systems were selected together with a self-crosslinking acid system for its diversion properties. In addition, customized pumping schedule was constructed using acid fracturing and diverting simulators and based on optimal conductivity/productivity results fluid stages number and sequence, flow rates and acid volumes were selected. The engineered acid treatment generated a network of conductive fractures that resulted in a significant improvement over initial production rate. Diverting agent efficiency was observed during pumping treatment by a 1,300 psi increase in surface pressures when the diverting agent entered the formation. Oil production increased from 648.7 to 3105.89 BPD, and gas production increased from 4.9 to 26.92 MMSCFD. This success results demonstrates that engineering design coupled with laboratory tailor fluids designs, integrated with a flawless execution, are the key to a successful stimulation. This paper describes the details of acidizing technique, treatment design and lessons learned during execution and results.


2021 ◽  
Author(s):  
Amjed Mohamed Hassan ◽  
Murtada Saleh Aljawad ◽  
Mohamed Ahmed Mahmoud

Abstract Acid fracturing treatments are conducted to increase the productivity of naturally fractured reservoirs. The treatment performance depends on several parameters such as reservoir properties and treatment conditions. Different approaches are available to estimate the efficacy of acid fracturing stimulations. However, a limited number of models were developed considering the presence of natural fractures (NFs) in the hydrocarbon reservoirs. This work aims to develop an efficient model to estimate the effectiveness of acid fracturing treatment in naturally fractured reservoirs utilizing an artificial neural network (ANN) technique. In this study, the improvement in hydrocarbon productivity due to applying acid fracturing treatment is estimated, and the interactions between the natural fractures and the induced ones are considered. More than 3000 scenarios of reservoir properties and treatment parameters were used to build and validate the ANN model. The developed model considers reservoir and treatment parameters such as formation permeability, injection rate, natural fracture spacing, and treatment volume. Furthermore, percentage error and correlation coefficient were determined to assess the model prediction performance. The proposed model shows very effective performance in predicting the performance of acid fracturing treatments. A percentage error of 6.3 % and a correlation coefficient of 0.94 were obtained for the testing datasets. Furthermore, a new correlation was developed based on the optimized AI model. The developed correlation provides an accurate and quick prediction for productivity improvement. Validation data were used to evaluate the reliability of the new equation, where a 6.8% average absolute error and 0.93 correlation coefficient were achieved, indicating the high reliability of the proposed correlation. The novelty of this work is developing a robust and reliable model for predicting the productivity improvement for acid fracturing treatment in naturally fractured reservoirs. The new correlation can be utilized in improving the treatment design for naturally fractured reservoirs by providing quick and reliable estimations.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8185
Author(s):  
Rahman Lotfi ◽  
Mostafa Hosseini ◽  
Davood Aftabi ◽  
Alireza Baghbanan ◽  
Guanshui Xu

Acid fracturing simulation has been widely used to improve well performance in carbonate reservoirs. In this study, a computational method is presented to optimize acid fracturing treatments. First, fracture geometry parameters are calculated using unified fracture design methods. Then, the controllable design parameters are iterated till the fracture geometry parameters reach their optimal values. The results show higher flow rates are required to achieve optimal fracture geometry parameters with larger acid volumes. Detailed sensitivity analyses are performed on controllable and reservoir parameters. It shows that higher flow rates should be applied for fluids with lower viscosity. Straight acid reaches optimal conditions at higher flow rates and lower volumes. These conditions for retarded acids appear to be only at lower flow rates and higher volumes. The study of the acid concentration for gelled acids shows that both flow rate and volume increase as the concentration increases. For the formation with lower permeability, a higher flow rate is required to achieve the desired larger fracture half-length and smaller fracture width. Further investigations also show that the formation with higher Young’s modulus requires decreasing the acid volume and increasing the optimal flow rate, while the formation with higher closure stress requires increasing the acid volume and decreasing the flow rate.


2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract The goal of acid fracturing operations is to create enough fracture roughness through non-uniform acid etching on fracture surfaces such that the acid fracture can keep open and sustain a high enough acid fracture conductivity under the formation closure stress. A detailed description of the rough acid-fracture surfaces is required for accurately predicting the acid-fracture conductivity. In this paper, a 3D acid transport model was developed to compute the geometry of acid fracture for acid fracturing treatments. The developed model couples the acid fluid flow, reactive transport and rock dissolution in the fracture. We also included acid viscous fingering in our model since the viscous fingering mechanism is commonly applied in acid fracturing to achieve non-uniform acid etching. Carbonate reservoirs mainly consists of calcite and dolomite minerals but the mineral distribution can be quite heterogeneous. Based on the developed model, we analyzed the effect of mineral heterogeneity on the acid etching process. We compared the acid etching patterns in different carbonate reservoirs with different spatial distributions of calcite and dolomite minerals. We found that thin acid-etched channels can form in carbonate reservoirs with interbedded dolomite layers. When the reservoir heterogeneity does not favor growing thin acid-etched channels, we investigated how to utilize the acid viscous fingering technique to achieve the channeling etching pattern in such reservoirs. Through numerical simulations, we found that thin acid-etched channels can form inside acid viscous fingers. The regions between viscous fingers are left less etched and act as barriers to separate acid-etched channels. In acid fracturing treatments with viscous fingering, the etching pattern is largely dependent on the perforation spacing. With a proper perforation design, we can still achieve the channeling etching pattern even when the reservoir does not have interbedded dolomite layers.


Sign in / Sign up

Export Citation Format

Share Document