scholarly journals TRANSLATIONAL MOTION COMPENSATION TECHNIQUES IN ISAR IMAGING FOR TARGET WITH MICRO-MOTION PARTS

2014 ◽  
Vol 35 ◽  
pp. 113-120 ◽  
Author(s):  
Bin Yuan ◽  
Shi You Xu ◽  
Zeng Ping Chen
Author(s):  
Lei Zhang ◽  
Jia-lian Sheng ◽  
Jia Duan ◽  
Meng-dao Xing ◽  
Zhi-jun Qiao ◽  
...  

2021 ◽  
Vol 32 (1) ◽  
pp. 68-80
Author(s):  
Wang Yong ◽  
Zhou Xingyu ◽  
Lu Xiaofei ◽  
Li Yajun

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2773 ◽  
Author(s):  
Yu Xing ◽  
Peng You ◽  
Shaowei Yong

Micro-motion dynamics produce Micro-range (m-R) signatures which are important features for target classification and recognition, provided that the range resolution of radar signal is high enough. However, dechirping the echo with reference measured by narrow bandwidth radar would generate the residual translational motion, which exhibits as random shifts of envelopes of range profiles. The residual translational motion would destroy the periodicity of m-R signatures and make a challenge to estimate rotational parameter. In this work, we proposed an efficient high-resolution range profile (HRRP)-based method to estimate rotational parameter, in which online measured reference distances are used to dechirp the radar raw echo. Firstly, the deduction for the modified first conditional comment of range profiles (MFCMRP) is introduced in detail, and the MFCMRP contain periodic and random components when dechirped by measured reference, corresponding to the rotational motion and the reference measured errors compared with actual reference. Secondly, the Wavelet Transform (WT) is utilized to separate the measured errors from the MFCMRP. The estimations of measured errors are used to compensate the MFCMRP, and then autocorrelation is performed on the estimated periodic component to obtain the estimation of rotational period. Lastly, the rotational amplitudes and phases are achieved by inverse Radon transform (IRT) of the compensated HRRP. The effectiveness of the proposed method in this paper is verified by synthetic data and measured radar data.


Sign in / Sign up

Export Citation Format

Share Document