low snr
Recently Published Documents


TOTAL DOCUMENTS

1088
(FIVE YEARS 318)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 72 (1) ◽  
pp. 122-132
Author(s):  
Remadevi M. ◽  
N. Sureshkumar ◽  
R. Rajesh ◽  
T. Santhanakrishnan

Towed array sonars are preferred for detecting stealthy underwater targets that emit faint acoustic signals in the ocean, especially in shallow waters. However, the towing ship being near to the array behaves as a loud target, introducing additional interfering signals to the array, severely affecting the detection and classification of potential targets. Canceling this underlying interference signal is a challenging task and is investigated in this paper for a shallow ocean operational scenario where the problem is more critical due to the multipath phenomenon. A method exploiting the eigenvector analysis of spatio-temporal covariance matrix based on space time adaptive processing is proposed for suppressing tow ship interference and thus improving target detection. The developed algorithm learns the interference patterns in the presence of target signals to mitigate the interference across azimuth and to remove the spectral leakage of own-ship. The algorithm is statistically analyzed through a set of relevant metrics and is tested on simulated data that are equivalent to the data received by a towed linear array of acoustic sensors in a shallow ocean. The results indicate a reduction of 20-25dB in the tow ship interference power while the detection of long-range low SNR targets remain largely unaffected with minimal power-loss. In addition, it is demonstrated that the spectral leakage of tow ship, on multiple beams across the azimuth, due to multipath, is also alleviated leading to superior classification capabilities. The robustness of the proposed algorithm is validated by the open ocean experiment in the coastal shallow region of the Arabian Sea at Off-Kochi area of India, which produced results in close agreement with the simulations. A comparison of the simulation and experimental results with the existing PCI and ECA methods is also carried out, suggesting the proposed method is quite effective in suppressing the tow ship interference and is immensely beneficial for the detection and classification of long-range targets.


2021 ◽  
Author(s):  
Seongtak Kang ◽  
Jiho Park ◽  
Kyungsoo Kim ◽  
Sung-Ho Lim ◽  
Joon Ho Choi ◽  
...  

In vivo calcium imaging is a standard neuroimaging technique that allows the simultaneous observation of neuronal population activity. In calcium imaging, the activation signals of neurons are key information for the investigation of neural circuits. For efficient extraction of the calcium signals of neurons, selective detection of the region of interest (ROI) pixels corresponding to the active subcellular region of the target neuron is essential. However, current ROI detection methods for calcium imaging data exhibit relatively low extraction performance from neurons with a low signal-to-noise power ratio (SNR). This is problematic because a low SNR is unavoidable in many biological experimental settings. Therefore, we propose an iterative correlation-based ROI detection (ICoRD) method that robustly extracts the calcium signal of the target neuron from a calcium imaging series with severe noise. ICoRD extracts calcium signals closer to the ground truth than the conventional method from simulated calcium imaging data in all low SNR ranges. Additionally, this study confirmed that ICoRD robustly extracts activation signals against noise, even within in vivo environments. ICoRD showed reliable detection from neurons with low SNR and sparse activation, which were not detected by the conventional methods. ICoRD will facilitate our understanding of neural circuit activity by providing significantly improved ROI detection from noisy images.


2021 ◽  
Vol 1 (1) ◽  
pp. 134-145
Author(s):  
Hadeel S. Abed ◽  
Hikmat N. Abdullah

Cognitive radio (CR) is a promising technology for solving spectrum sacristy problem. Spectrum sensing  is the main step of CR.  Sensing the wideband spectrum produces more challenges. Compressive sensing (CS) is a technology used as spectrum sening  in CR to solve these challenges. CS consists of three stages: sparse representation, encoding and decoding. In encoding stage sensing matrix are required, and it plays an important role for performance of CS. The design of efficient sensing matrix requires achieving low mutual coherence . In decoding stage the recovery algorithm is applied to reconstruct a sparse signal. İn this paper a new chaotic matrix is proposed based on Chebyshev map and modified gram Schmidt (MGS). The CS based proposed matrix is applied for sensing  real TV signal as a PU. The proposed system is tested under two types of recovery algorithms. The performance of CS based proposed matrix is measured using recovery error (Re), mean square error (MSE), and probability of detection (Pd) and evaluated by comparing it with Gaussian, Bernoulli and chaotic matrix in the literature. The simulation results show that the proposed system has low Re and high Pd under low SNR values and has low MSE with high compression.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8344
Author(s):  
Shih-Lin Lin

This paper proposes a new method called independent component analysis–variational mode decomposition (ICA-VMD), which combines ICA and VMD. The purpose is to study the application of ICA-VMD in low signal-to-noise ratio (SNR) signal processing and data analysis. ICA is a very important method in the field of machine learning. It is an unsupervised learning algorithm that can dig out the independent factors hidden in the observation signal. The VMD method estimates each signal component by solving the frequency domain variational optimization problem, and it is very suitable for mechanical fault diagnosis. The advantage of ICA-VMD is that it requires two sensory cues to distinguish the original source from the unwanted noise. In the three cases studied here, the original source was first contaminated by white Gaussian noise. The three cases in this study are under different SNR conditions. The SNR in the first case is –6.46 dB, the SNR in the second case is –21.3728, and the SNR in the third case is –46.8177. The simulation results show that the ICA-VMD method can effectively recover the original source from the contaminated data. It is hoped that, in the future, there will be new discoveries and advances in science and technology to solve the noise interference problem through this method.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3068
Author(s):  
Gerardo Saggese ◽  
Antonio Giuseppe Maria Strollo

High-density microelectrode arrays allow the neuroscientist to study a wider neurons population, however, this causes an increase of communication bandwidth. Given the limited resources available for an implantable silicon interface, an on-fly data reduction is mandatory to stay within the power/area constraints. This can be accomplished by implementing a spike detector aiming at sending only the useful information about spikes. We show that the novel non-linear energy operator called ASO in combination with a simple but robust noise estimate, achieves a good trade-off between performance and consumption. The features of the investigated technique make it a good candidate for implantable BMIs. Our proposal is tested both on synthetic and real datasets providing a good sensibility at low SNR. We also provide a 1024-channels VLSI implementation using a Random-Access Memory composed by latches to reduce as much as possible the power consumptions. The final architecture occupies an area of 2.3 mm2, dissipating 3.6 µW per channels. The comparison with the state of art shows that our proposal finds a place among other methods presented in literature, certifying its suitability for BMIs.


2021 ◽  
Vol 201 ◽  
pp. 107505
Author(s):  
She Wang ◽  
Chijie Zhuang ◽  
Yinan Geng ◽  
Tingting Wang ◽  
Bin Luo ◽  
...  

2021 ◽  
Author(s):  
Jingyi Sun ◽  
Yusuke Mukuhira ◽  
Takayuki Nagata ◽  
Taku Nonomura ◽  
Hirokazu Moriya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document