minimum entropy
Recently Published Documents


TOTAL DOCUMENTS

805
(FIVE YEARS 171)

H-INDEX

45
(FIVE YEARS 9)

Author(s):  
Andreas Dechant

Abstract We investigate the problem of minimizing the entropy production for a physical process that can be described in terms of a Markov jump dynamics. We show that, without any further constraints, a given time-evolution may be realized at arbitrarily small entropy production, yet at the expense of diverging activity. For a fixed activity, we find that the dynamics that minimizes the entropy production is given in terms of conservative forces. The value of the minimum entropy production is expressed in terms of the graph-distance based Wasserstein distance between the initial and final configuration. This yields a new kind of speed limit relating dissipation, the average number of transitions and the Wasserstein distance. It also allows us to formulate the optimal transport problem on a graph in term of a continuous-time interpolating dynamics, in complete analogy to the continuous space setting. We demonstrate our findings for simple state networks, a time-dependent pump and for spin flips in the Ising model.


2021 ◽  
pp. 0958305X2110707
Author(s):  
B C Anilkumar ◽  
Ranjith Maniyeri ◽  
S Anish

One of the important issues humankind globally faces in recent years is the scarcity of non-renewable energy resources. Solar energy is considered safe and renewable, which can fulfil the demand and supply chain requirements. Solar box cookers (SBCs) are popular in domestic cooking due to their ease of use and handling. The prime objective of the present work is to develop and test the performance of a cylindrical SBC fitted with decahedron-shaped reflector (CSBC-FDR). The CSBC is designed using minimum entropy generation (MEG) method. Through experiments, we observed that absorber plate attains peak temperature of about 138°C–150°C with the aid of decahedron reflector. The first figure of merit (F1) is found to be 0.13, indicating better optical efficiency and low heat loss coefficient for the SBC. The second figure of merit (F2) is obtained as 0.39, which indicates good heat exchange efficiency (F') and less heat capacity for cooker's interior. The average energy efficiency, exergy efficiency, and standardized cooking power values are 21.93%, 3.04%, and 25.28W, respectively. These results show that the present CSBC-FDR is able to cook food in a shorter period with better efficiency. The experimental and numerical values of overall heat loss coefficient of the developed SBC are in close agreement. The experimentally assessed performance parameters reveal superior performance of the present cylindrical SBC in comparison with many conventional rectangular and trapezoidal box solar cookers.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Kai Lin

This work discusses the black hole thermodynamics in a weak dynamical Anti-de Sitter spacetime, which should be described by the nonequilibrium thermodynamics, because the metric depends on the time coordinate. Taking the Vaidya-Anti-de Sitter black hole spacetime as an example, the local entropy balance equations and principle of minimum entropy generation are derived, and finally, some irreversible effects in nonequilibrium thermodynamics are studied by using the Onsager reciprocal relation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10 ◽  
Author(s):  
Jue Li ◽  
Hui Wei ◽  
Yongsheng Yao ◽  
Xin Hu ◽  
Lei Wang

In view of the deficiency that traditional pavement performance evaluation index did not consider the influence of their difference on weight, the grade of the evaluation index also did not take into account intermediate state and the impact of uncertainty on the evaluation results, a determination method of pavement performance evaluation index weight based on entropy theory was developed. The unascertained measurement function of evaluation index was performed by left-half ladder distribution, and unascertained measurement matrix was obtained. The index weight was calculated by minimum entropy theory, and the practicability of this method was verified through a concrete example finally. The results show that there were different weights in different samples, which depended on index measurement function and were the overall characterization of comprehensive measurement of every index. The method which is based on the given weighting factor did not conform to the engineering facts. It was difficult to identify the importance of the pavement performance evaluation index in different samples. The balance of the various indexes is better to be considered in the proposed method, and the comprehensive situation of pavement performance is really reflected, which improves the evaluation of the reliability.


Author(s):  
Jianqun Zhang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun ◽  
Jun Zhang

Abstract Weak fault detection is a complex and challenging task when two or more faults (compound fault) with discordant severity occur in different parts of a gearbox. The weak fault features are prone to be submerged by the severe fault features and strong background noise, which easily lead to a missed diagnosis. To solve this problem, a novel diagnosis method combining muti-symplectic geometry mode decomposition and multipoint optimal minimum entropy deconvolution adjusted (MSGMD-MOMEDA) is proposed for gearbox compound fault in this paper. Specifically, different fault components are separated by the improved symplectic geometry mode decomposition (SGMD), namely, multi-SGMD (MSGMD) method. The weak fault features are enhanced by the multipoint optimal minimum entropy deconvolution adjusted (MOMEDA). In the process of research, a new scheme of selecting key parameters of MOMEDA is proposed, which is a key step in applying MOMEDA. Compared with SGMD, the proposed MSGMD has two main improvements, including suppressing mode mixing and preventing the generation of the pseudo components. Compared with the original method of selecting parameters based on multipoint kurtosis, the proposed MOMEDA parameters selecting scheme has more merits of high accuracy and precision. The analysis results of two cases of simulation and experiment signal reveal that the MSGMD-MOMEDA method can accurately diagnose the gearbox compound fault even under strong background noise.


2021 ◽  
pp. 107754632110507
Author(s):  
HongChao Wang ◽  
WenLiao Du ◽  
Haiyi Li ◽  
Zhiwei Li ◽  
Jiale Hu

As the most commonly used support component in engineering, rolling element bearing is also the most prone-to-failure part. The vibration signal of faulty bearing will take on repetitive impact and modulation characteristics, and the two features are often difficult to be extracted by conventional fault feature extraction methods such as envelope spectral. The main reasons are due to the influence of strong background noise, the signal attenuation of the acquisition path, and the early weak failure characteristics. To solve the above problem, a weak fault feature extraction method of rolling element bearing by combing improved minimum entropy de-convolution with enhanced envelope spectral is proposed in the paper. The enhancement effect of improved minimum entropy de-convolution on impact features and the satisfactory extraction effect of EES on repetitive impact and modulation features are utilized comprehensively by the proposed method. Firstly, improved minimum entropy de-convolution is used to filter the vibration signal of faulty bearing to enhance the impact characteristics, and the influence of signal acquisition path on the attenuation of the signal characteristics is also weakened at the same time. Then, enhanced envelope spectral is performed on the filtered signal, and the repetitive impact and modulation characteristics of vibration signal are extracted synchronously. In order to solve the shortcomings of the current commonly used de-convolution methods, an improved minimum entropy de-convolution method based on D-norm is proposed, which can solve the interference caused by random impulsive signals effectively. In addition, compared with the conventional method such as envelope spectral, the enhanced envelope spectral method could extract the repetitive impact and modulation characteristics of the faulty signal simultaneously much more effectively. Effectiveness and superiority of the proposed method are verified through simulation, experiment, and engineering application.


2021 ◽  
pp. 1-3
Author(s):  
Jaya Sreevalsan-Nair
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document