scholarly journals ANALYSIS OF MICROWAVE SCATTERING FROM A REALISTIC HUMAN HEAD MODEL FOR BRAIN STROKE DETECTION USING ELECTROMAGNETIC IMPEDANCE TOMOGRAPHY

2016 ◽  
Vol 52 ◽  
pp. 45-56 ◽  
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar ◽  
Adnan Maqsood
2018 ◽  
Vol 5 (7) ◽  
pp. 180319
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar ◽  
Samah Mustafa

In this paper, a detailed analysis of microwave (MW) scattering from a three-dimensional (3D) anthropomorphic human head model is presented. It is the first time that the finite-element method (FEM) has been deployed to study the MW scattering phenomenon of a 3D realistic head model for brain stroke detection. A major contribution of this paper is to add anatomically more realistic details to the human head model compared with the literature available to date. Using the MRI database, a 3D numerical head model was developed and segmented into 21 different types through a novel tissue-mapping scheme and a mixed-model approach. The heterogeneous and frequency-dispersive dielectric properties were assigned to brain tissues using the same mapping technique. To mimic the simulation set-up, an eight-elements antenna array around the head model was designed using dipole antennae. Two types of brain stroke (haemorrhagic and ischaemic) at various locations inside the head model were then analysed for possible detection and classification. The transmitted and backscattered signals were calculated by finding out the solution of the Helmholtz wave equation in the frequency domain using the FEM. FE mesh convergence analysis for electric field values and comparison between different types of iterative solver were also performed to obtain error-free results in minimal computational time. At the end, specific absorption rate analysis was conducted to examine the ionization effects of MW signals to a 3D human head model. Through computer simulations, it is foreseen that MW imaging may efficiently be exploited to locate and differentiate two types of brain stroke by detecting abnormal tissues’ dielectric properties. A significant contrast between electric field values of the normal and stroke-affected brain tissues was observed at the stroke location. This is a step towards generating MW scattering information for the development of an efficient image reconstruction algorithm.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4061 ◽  
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar

In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model.After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement.It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems.


2021 ◽  
Vol 36 (2) ◽  
pp. 159-167
Author(s):  
Fatih Kaburcuk ◽  
Atef Elsherbeni

Numerical study of electromagnetic interaction between an adjacent antenna and a human head model requires long computation time and large computer memory. In this paper, two speeding up techniques for a dispersive algorithm based on finite-difference time-domain method are used to reduce the required computation time and computer memory. In order to evaluate the validity of these two speeding up techniques, specific absorption rate (SAR) and temperature rise distributions in a dispersive human head model due to radiation from an antenna integrated into a pair of smart glasses are investigated. The antenna integrated into the pair of smart glasses have wireless connectivity at 2.4 GHz and 5th generation (5G) cellular connectivity at 4.9 GHz. Two different positions for the antenna integrated into the frame are considered in this investigation. These techniques provide remarkable reduction in computation time and computer memory.


Sign in / Sign up

Export Citation Format

Share Document