scholarly journals Finite-element analysis of microwave scattering from a three-dimensional human head model for brain stroke detection

2018 ◽  
Vol 5 (7) ◽  
pp. 180319
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar ◽  
Samah Mustafa

In this paper, a detailed analysis of microwave (MW) scattering from a three-dimensional (3D) anthropomorphic human head model is presented. It is the first time that the finite-element method (FEM) has been deployed to study the MW scattering phenomenon of a 3D realistic head model for brain stroke detection. A major contribution of this paper is to add anatomically more realistic details to the human head model compared with the literature available to date. Using the MRI database, a 3D numerical head model was developed and segmented into 21 different types through a novel tissue-mapping scheme and a mixed-model approach. The heterogeneous and frequency-dispersive dielectric properties were assigned to brain tissues using the same mapping technique. To mimic the simulation set-up, an eight-elements antenna array around the head model was designed using dipole antennae. Two types of brain stroke (haemorrhagic and ischaemic) at various locations inside the head model were then analysed for possible detection and classification. The transmitted and backscattered signals were calculated by finding out the solution of the Helmholtz wave equation in the frequency domain using the FEM. FE mesh convergence analysis for electric field values and comparison between different types of iterative solver were also performed to obtain error-free results in minimal computational time. At the end, specific absorption rate analysis was conducted to examine the ionization effects of MW signals to a 3D human head model. Through computer simulations, it is foreseen that MW imaging may efficiently be exploited to locate and differentiate two types of brain stroke by detecting abnormal tissues’ dielectric properties. A significant contrast between electric field values of the normal and stroke-affected brain tissues was observed at the stroke location. This is a step towards generating MW scattering information for the development of an efficient image reconstruction algorithm.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4061 ◽  
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar

In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model.After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement.It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems.


2017 ◽  
Vol 34 (13) ◽  
pp. 2154-2166 ◽  
Author(s):  
Shailesh Ganpule ◽  
Nitin P. Daphalapurkar ◽  
Kaliat T. Ramesh ◽  
Andrew K. Knutsen ◽  
Dzung L. Pham ◽  
...  

Author(s):  
Tanu Khanuja ◽  
Harikrishnan Narayanan Unni

Traumatic brain injuries are life-threatening injuries that can lead to long-term incapacitation and death. Over the years, numerous finite element human head models have been developed to understand the injury mechanisms of traumatic brain injuries. Many of these models are erroneous and used ellipsoidal or spherical geometries to represent brain. This work is focused on the development of high-quality, comprehensive three-dimensional finite element human head model with accurate representation of cerebral sulci and gyri structures in order to study traumatic brain injury mechanisms. Present geometry, predicated on magnetic resonance imaging data consist of three rudimentary components, that is, skull, cerebrospinal fluid with the ventricular system, and the soft tissues comprising the cerebrum, cerebellum, and brain stem. The brain is modeled as a hyperviscoelastic material. Meshed model with 10 nodes modified tetrahedral type element (C3D10M) is validated against two cadaver-based impact experiments by comparing the intracranial pressures at different locations of the head. Our results indicate a better agreement with cadaver results, specifically for the case of frontal and parietal intracranial pressure values. Existing literature focuses mostly on intracranial pressure validation, while the effects of von Mises stress on brain injury are not analyzed in detail. In this work, a detailed interpretation of neurological damage resulting from impact injury is performed by analyzing von Mises stress and intracranial pressure distribution across numerous segments of the brain. A reasonably good correlation with experimental data signifies the robustness of the model for predicting injury mechanisms based on clinical predictions of injury tolerance criteria.


2004 ◽  
Author(s):  
Susumu Ejima ◽  
Tetsuya Nishimoto ◽  
Kohei Yuge ◽  
Kohei Tomonaga ◽  
Shigeyuki Murakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document