scholarly journals Deformation and Anchoring of AA 2024-T3 rivets within thin printed circuit boards

2021 ◽  
Author(s):  
Maria Clara Farah Antunes Vilas Boas ◽  
Camila Fernanda Rodrigues ◽  
Lucian-Attila Blaga ◽  
Jorge Fernandez dos Santos ◽  
Benjamin Klusemann

This work evaluates the viability of applying Friction Riveting as an alternative for the assembly of components on printed circuit boards (PCBs). The popular press-fit technology for assembling components on PCBs consists of a pin inserted tightly into a relatively smaller hole, resulting in good electrical and mechanical properties. However, some limitations are highlighted, such as numerous processing steps and the need for predrilled holes. Friction Riveting is based on mechanical fastening and friction welding principles, where polymeric components are joined with metallic rivets through frictional heating and pressure. The main benefits of using Friction Riveting in PCBs compared with fit-press are (i) a reduced number of processing steps and (ii) shorter joining cycles, because there is no pre-drilling involved with fasteners anchored within the PCB in a single step. The joints were manufactured using 5 mm diameter AA-2024-T3 rivets and 1.5 mm thick glass-fiber-reinforced epoxy laminates (FR4-PCB). It is shown for the first time that it is possible to deform metallic rivets within thin composite plates at a reduced diameterto-thickness ratio. The feasibility study followed a one-factor-a-time approach for parameter screening and optical microscopy assessed joint formation of the deformed rivets inside the laminates through volumetric ratio (VR). The joints present significant deformation (VR=0.5) at the tip of the rivet inserted into overlapped PCBs plates, with thicknesses below 3.0 mm, which is considered the lowest achieved so far with Friction Riveting.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Hironori Tohmyoh ◽  
Kiichiro Yamanobe ◽  
Masumi Saka ◽  
Jiro Utsunomiya ◽  
Takeshi Nakamura ◽  
...  

This paper deals with typical mechanical problems that are encountered in a solderless press-fit assembly process. First, the elastic-plastic properties of two types of press-fit pins and the friction coefficients of the pins in thin plated through holes are determined both experimentally and by three-dimensional finite element analysis. The elastic-plastic properties of the press-fit pins are determined by small-scale testing under three-point bending. The coefficients of friction of the pins in the through holes are successfully determined from the load-displacement relationships of the pins during press-fit assembly processes. The validity of the parameters that are determined is clarified by inserting the press-fit pins into holes of different diameters. By comparing the damaged areas of the printed circuit boards after assembly and the numerically obtained stress distributions, the failure stress of the boards is determined. Finally, both the retention force of the pins and the degree of damage to the printed circuit boards after assembly are predicted by numerical analysis.


2008 ◽  
Vol 128 (11) ◽  
pp. 657-662 ◽  
Author(s):  
Tsuyoshi Maeno ◽  
Yukihiko Sakurai ◽  
Takanori Unou ◽  
Kouji Ichikawa ◽  
Osamu Fujiwara

2018 ◽  
Vol 23 (2) ◽  
pp. 141-148
Author(s):  
S.Sh. Rekhviashvili ◽  
◽  
M.O. Mamchuev ◽  
V.V. Narozhnov ◽  
M.M. Oshkhunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document