High oxygen tension during in vitro maturation of human oocytes improves developmental competence.

Author(s):  
Megumi Miura
2011 ◽  
Vol 23 (1) ◽  
pp. 169
Author(s):  
J. T. Kang ◽  
M. Atikuzzaman ◽  
D. K. Kwon ◽  
S. J. Park ◽  
S. J. Kim ◽  
...  

The in vitro developmental abilities of porcine oocytes are generally increasing steadily at a similar ratio to those of in vivo embryos. However, it has been suggested that the in vitro culture system for the development of porcine embryos is not optimal. In this study, we investigated the effect of 2 oxygen concentrations (5 and 20%) on porcine embryo development during in vitro maturation and in vitro culture and analyzed differences in gene expression of resulting blastocysts. Oocytes were recovered by aspiration of slaughterhouse ovaries and then matured in tissue culture medium (TCM) 199 supplemented with 10% porcine follicular fluid (pFF), epidermal growth factor (EGF), insulin, pyruvate, cystine, and gonadotropin. Matured oocytes were then activated parthenogenetically, cultured in PZM-3 media for 7 days. In vitro maturation (M group) of oocytes was carried out under two oxygen concentration (5 and 20%) in terms of nuclear maturation (polar body extrusion; Exp. 1). The developmental differences between 5% oxygen culture group and 20% oxygen culture group during in vitro culture (C group) of embryos after parthenogenetic activation was investigated in terms of first cleavage and blastocyst formation (Exp. 2). Relative mRNA abundance of multiple genes in blastocysts was analyzed for transcript abundance of genes related with metabolism (GLUT1, LDHA), oxidative response (MnSOD, GPX1), apoptosis (BAX, Bcl2), and developmental competence (CCNB1, IGF2R; Exp. 3). The results show there were no significant differences in maturation rate between 2 oxygen concentrations during in vitro maturation (83 v. 86%). It was thought that cumulus cells surrounding oocytes might have attenuated oxidative stress, but number of resulting blastocysts were (P < 0.05) increased in 5% IVC group when compared with 20% IVC group (18.67 v. 14.09%, respectively). Moreover, the M20C5 group (23.01%) had a beneficial effect on in vitro culture compared with M5C5 (14.32%), M5C20 (10.30%), and M20C20 (17.88%) groups. Total cell numbers were not significantly different among groups. According to mRNA abundance data of multiple genes, each group altered the expression of genes in various patterns. Therefore, it could be concluded that high oxygen tension during in vitro maturation and low oxygen tension during in vitro culture might alter the expression of multiple genes related to oocyte competence and improve (P < 0.05) embryo development, but not blastocyst quality. This study was supported by MKE (#2009-67-10033839, #2009-67-10033805), NRF (#M10625030005-508-10N25), BK21 for Veterinary Science, IPET (#109023-05-1-CG000), and Hanhwa L&C.


2017 ◽  
Vol 108 (3) ◽  
pp. e145-e146
Author(s):  
R. Matsunaga ◽  
S. Watanabe ◽  
W. Mita ◽  
M. Miura ◽  
Y. Kobayashi ◽  
...  

2006 ◽  
Vol 82 (10) ◽  
pp. 677-682 ◽  
Author(s):  
Mu Shu-Chi ◽  
Hwang Jiann-Loung ◽  
Lin Yu-Hung ◽  
Sung Tseng-Chen ◽  
Lin Ming-I ◽  
...  

2016 ◽  
Vol 95 (4) ◽  
pp. 76-76 ◽  
Author(s):  
A. Okamoto ◽  
M. Ikeda ◽  
A. Kaneko ◽  
C. Kishida ◽  
M. Shimada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document