Clinical Treatment
Recently Published Documents


TOTAL DOCUMENTS

1505
(FIVE YEARS 752)

H-INDEX

53
(FIVE YEARS 17)

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Liang Wang ◽  
Shuangbo Fan ◽  
Zhenping Zhao ◽  
Qian Xu

In recent years, the incidence of craniocerebral trauma has increased, making it one of the important causes of death and disability in neurosurgery patients. The decompressive craniectomy (DC) after severe craniocerebral injury has become the preferred treatment for patients with severe craniocerebral injury, but the incidence of postoperative hydrocephalus has become a difficult problem in clinical treatment. This study observed the changes of nerve growth factor (NGF), adrenocorticotropic hormone (ACTH), and arginine vasopressin (AVP) levels in the CSF after DC in patients with craniocerebral injury and analyzed the relationship between the three indicators and communicating hydrocephalus. The results showed that the levels of NGF, ACTH, and AVP in patients with cranial injury after DC were significantly higher than those in healthy subjects, and subdural effusion, traumatic subarachnoid hemorrhage (tSAH), and the levels of NGF, ACTH, and AVP in the CSF were independent risk factors for communicating hydrocephalus. Monitoring the levels of NGF, ACTH, and AVP is of great significance for clinicians to judge the occurrence of traffic hydrocephalus, evaluate the prognosis of patients with craniocerebral injury after DC, and guide clinical treatment.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1757
Author(s):  
Wei Liu ◽  
Bo Chen ◽  
Haocheng Zheng ◽  
Yun Xing ◽  
Guiyuan Chen ◽  
...  

Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.


Author(s):  
Yating Xu ◽  
Xiao Yu ◽  
Menggang Zhang ◽  
Qingyuan Zheng ◽  
Zongzong Sun ◽  
...  

Long non-coding RNAs (lncRNAs) are RNAs with a length of no less than 200 nucleotides that are not translated into proteins. Accumulating evidence indicates that lncRNAs are pivotal regulators of biological processes in several diseases, particularly in several malignant tumors. Long intergenic non-protein coding RNA 1116 (LINC01116) is a lncRNA, whose aberrant expression is correlated with a variety of cancers, including lung cancer, gastric cancer, colorectal cancer, glioma, and osteosarcoma. LINC01116 plays a crucial role in facilitating cell proliferation, invasion, migration, and apoptosis. In addition, numerous studies have recently suggested that LINC01116 has emerged as a novel biomarker for prognosis and therapy in malignant tumors. Consequently, we summarize the clinical significance of LINC01116 associated with biological processes in various tumors and provide a hopeful orientation to guide clinical treatment of various cancers in future studies.


Author(s):  
Tiansheng Liu ◽  
Guowei Zhong ◽  
Dongying Tang ◽  
Xu Liu ◽  
Xianghua Zhong ◽  
...  

Bacterial infections, especially infections caused by multi-drug resistant bacteria, pose a serious threat to human health and bring huge challenges to clinical treatment. The excessive use of antibiotics can easily lead to the emergence of bacterial resistance, which severely limits clinical treatment options. There is an urgent need to develop high-efficiency antibacterial materials and treatment strategies to inhibit infections caused by multidrug-resistant bacteria. In this work, a nanocomposite named [email protected]@HA(OHH NPs) combined with the laser irradiation was used to reduce the development of drug resistance and accelerate wound healing in a model infected by Klebsiella pneumoniae(K.Pneumoniae). In vitro results showed that compared with OHH NPs or NIR laser irradiation alone, this combination strategy can exert a synergistic effect on anti-K.Pneumoniae by destroying cell integrity with generating ROS and reducing ATP, and also inhibit the development of bacterial resistance. Moreover, in vivo experiments have shown that the system effectively promotes wound healing through killing K.Pneumoniae and promoting the formation of new tissues. In summary, these results indicate that OHH NPs show great potential in the clinical application of bacterial infections.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lingtong You ◽  
Jiaxin Huang ◽  
Jinning Zhang ◽  
Zhixian Jiang

Abstract Background Intracranial aneurysm rupture is the main cause of subarachnoid hemorrhage, leading to high disability and mortality. This study aimed to evaluate the clinical treatment effects of multiple overlapping stent-assisted coiling for complex intracranial aneurysms. Methods We conducted a randomized, controlled, single-blinded clinical trial among 168 patients diagnosed with complex intracranial aneurysms. Treatment allocation to either single stent (SS) group or multiple stent (MS) group was randomized at 1:1 ratio using a Web-based platform. The O’Kelly–Marotta (OKM) grading scale was used to evaluate the degree of aneurysm occlusion after operation and during follow-up. Good aneurysm occlusion was defined as OKM grade C–D. The modified Rankin Scale (mRS) was used to evaluate the neurological status and the clinical outcome of patients. Results Efficacy comparative analysis demonstrated that major recurrence of aneurysms was significantly reduced in the MS group (P = 0.012). In addition, the MS group displayed significantly reduced number of patients with mRS between 3 and 6 (P = 0.007) and increased number of patients with mRS between 0 and 1 (P = 0.034). Furthermore, the MS group showed increased percentage of patients with OKM grade C–D (P = 0.041). Compared with the SS group, the MS group exhibited decreased mortality (P = 0.037) and morbidity (P = 0.035). Conclusions Multiple overlapping stent-assisted coiling significantly improved the clinical treatment effects and provided a new method for complex intracranial aneurysms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ran Yu ◽  
Guihua Jin ◽  
Manabu Fujimoto

Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Dongfang Han ◽  
Dajun Wang ◽  
Ba Sangzeren ◽  
Xiaomei Li

Exploring the effects of uterine imaging and hysteroscopy of endometrial polyps, this article has chosen the treatment effect of 50 cases of intrauterine polyps to observe hysteroscopy. The results showed that the diagnosis and sensitivity, specificity, positive, negative, and consistency were passed through various diagnostic methods ( P < 0.05 ). The diagnostic sensitivity of antidiagnosis combination and series combination was 90.0%, 64.0%, 96.0%, 92.0%, 80.0%, 80.0%, 88.0%, and 92.0%, parallel diagnosis with high sensitivity, significantly higher than simple diagnosis ( P < 0.05 ). Therefore, in the clinical treatment of endometrial polyps, hysteroscopic surgery is a safe and effective treatment, which can remove endometrial quality, improve the clinical symptoms of patients, and reduce the interference and postoperative recovery process of surgical trauma.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ni Yang ◽  
Kuo Liu ◽  
Mengxuan Yang ◽  
Xiang Gao

Noncoding RNAs have been shown with powerful ability in post-transcriptional regulation, enabling intertwined RNA crosstalk and global molecular interaction in a large amount of dysfunctional conditions including cancer. Competing endogenous RNAs (ceRNAs) are those competitively binding with shared microRNAs (miRNAs), freeing their counterparts from miRNA-induced degradation, thus actively influencing and connecting with each other. Constantly updated analytical approaches boost outstanding advancement achieved in this burgeoning hotspot in multilayered intracellular communication, providing new insights into pathogenesis and clinical treatment. Here, we summarize the mechanisms and correlated factors under this RNA interplay and deregulated transcription profile in neoplasm and tumor progression, underscoring the great significance of ceRNAs for diagnostic values, monitoring biomarkers, and prognosis evaluation in cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Tian-Liang Ma ◽  
Yong Zhou ◽  
Ci Wang ◽  
Lu Wang ◽  
Jing-Xian Chen ◽  
...  

Ferroptosis is an iron-dependent regulated necrosis characterized by the peroxidation damage of lipid molecular containing unsaturated fatty acid long chain on the cell membrane or organelle membrane after cellular deactivation restitution system, resulting in the cell membrane rupture. Ferroptosis is biochemically and morphologically distinct and disparate from other forms of regulated cell death. Recently, mounting studies have investigated the mechanism of ferroptosis, and numerous proteins play vital roles in regulating ferroptosis. With detailed studies, emerging evidence indicates that ferroptosis is found in multiple lung diseases, demonstrating that ferroptosis appears to be particularly important for lung diseases. The mounting interest in ferroptosis drugs specifically targeting the ferroptosis mechanism holds substantial therapeutic promise in lung diseases. The present review emphatically summarizes the functions and integrated molecular mechanisms of ferroptosis in various lung diseases, proposing that multiangle regulation of ferroptosis might be a promising strategy for the clinical treatment of lung diseases.


Sign in / Sign up

Export Citation Format

Share Document