Potential roles of spontaneous activity of olfactory receptor neurons in the olfactory behavior of Drosophila larvae

Author(s):  
Nao Utashiro
2019 ◽  
Author(s):  
Tayfun Tumkaya ◽  
James Stewart ◽  
Safwan B. Burhanudin ◽  
Adam Claridge-Chang

AbstractOptogenetics has become an important tool for the study of behavior, enabling neuroscientists to infer causations by examining behavior after activating genetically circumscribed neurons with light. Light-induced neural activity is affected by illumination parameters used in experiments, such as intensity, duration, and frequency. Here, we hypothesized that the intensity of light and the presence of oscillations in illumination would alter optogenetically induced olfactory behaviours. To test this, we activated olfactory receptor neurons (ORNs) in Drosophila by using either static or pulsed light stimuli across a range of light intensities. The various regimes elicited distinct behavioral valence responses (attraction, aversion, indifference) from several ORN types. Our results demonstrate the importance of both frequency and intensity for interpreting optogenetic behavioral experiments accurately; successfully generalizing optogenetic results requires the use of more than a single illumination regime.


2005 ◽  
Vol 65 (2) ◽  
pp. 97-114 ◽  
Author(s):  
Patricia Duchamp-Viret ◽  
Lubomir Kostal ◽  
Michel Chaput ◽  
Petr Lánsky ◽  
Jean-Pierre Rospars

1981 ◽  
Vol 45 (3) ◽  
pp. 529-549 ◽  
Author(s):  
P. A. Simmons ◽  
T. V. Getchell

1. Extracellular unitary recordings were made from the olfactory epithelium of the salamander, Ambystoma tigrinum, at numerous time points following olfactory nerve section. Unitary response properties were correlated with histological examination of the same tissues. 2. At 10 days following nerve section, unitary activity was rarely recorded in all regions of the epithelium. Histological examination indicated that virtually the entire mature olfactory receptor cell population had undergone retrograde degeneration. Transneuronal degeneration was not observed in the olfactory bulb, although the olfactory nerve and glomerular layers were substantially reduced in size. 3. At subsequent times, unitary impulse activity gradually returned, consisting of both spontaneous activity and odor-evoked discharges. Anatomical recovery of the olfactory epithelium preceded that of the olfactory bulb. A positive correlation was found between neuronal differentiation in the olfactory epithelium and the recovery of receptor cell function. 4. Patterns of spontaneous activity, odor specificities, intensity-response functions, and adaptive properties studied in newly differentiated olfactory receptor neurons were indistinguishable from those observed in control units. This indicated that these properties were intrinsic to the receptor neurons. 5. Spontaneously active and responsive units were encountered prior to olfactory nerve connection with the bulb. It is concluded that receptor neurons pass through two phases of functional maturity: the first independent of bulbar contact and the second dependent on presumed synaptic contact with bulbar neurons.


2008 ◽  
pp. S133-S138
Author(s):  
L Košťál ◽  
P Lánský

The analysis of information coding in neurons requires methods that measure different properties of neuronal signals. In this paper we review the recently proposed measure of randomness and compare it to the coefficient of variation, which is the frequently employed measure of variability of spiking neuronal activity. We focus on the problem of the spontaneous activity of neurons, and we hypothesize that under defined conditions, spontaneous activity is more random than evoked activity. This hypothesis is supported by contrasting variability and randomness obtained from experimental recordings of olfactory receptor neurons in rats.


Sign in / Sign up

Export Citation Format

Share Document