drosophila larvae
Recently Published Documents


TOTAL DOCUMENTS

405
(FIVE YEARS 65)

H-INDEX

45
(FIVE YEARS 5)

Author(s):  
Li-Ping Chen ◽  
Xue-Jie Xing ◽  
Ke-Lai Kang ◽  
Wen-Yao Yang ◽  
Liang Luo ◽  
...  
Keyword(s):  

Development ◽  
2021 ◽  
Vol 149 (8) ◽  
Author(s):  
Manisha Goyal ◽  
Ajay Tomar ◽  
Sukanya Madhwal ◽  
Tina Mukherjee

ABSTRACT The role of reactive oxygen species (ROS) in myeloid development is well established. However, its aberrant generation alters hematopoiesis. Thus, a comprehensive understanding of events controlling ROS homeostasis forms the central focus of this study. We show that, in homeostasis, myeloid-like blood progenitor cells of the Drosophila larvae, which reside in a specialized hematopoietic organ termed the lymph gland, use TCA to generate ROS. However, excessive ROS production leads to lymph gland growth retardation. Therefore, to moderate blood progenitor ROS, Drosophila larvae rely on olfaction and its downstream systemic GABA. GABA internalization and its breakdown into succinate by progenitor cells activates pyruvate dehydrogenase kinase (PDK), which controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH). PDH is the rate-limiting enzyme that connects pyruvate to the TCA cycle and to oxidative phosphorylation. Thus, GABA metabolism via PDK activation maintains TCA activity and blood progenitor ROS homeostasis, and supports normal lymph gland growth. Consequently, animals that fail to smell also fail to sustain TCA activity and ROS homeostasis, which leads to lymph gland growth retardation. Overall, this study describes the requirement of animal odor-sensing and GABA in myeloid ROS regulation and hematopoietic growth control.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3061
Author(s):  
Alexandre Rey ◽  
Laurent Schaeffer ◽  
Bénédicte Durand ◽  
Véronique Morel

Nesprin-1 is a large scaffold protein connecting nuclei to the actin cytoskeleton via its KASH and Calponin Homology domains, respectively. Nesprin-1 disconnection from nuclei results in altered muscle function and myonuclei mispositioning. Furthermore, Nesprin-1 mutations are associated with muscular pathologies such as Emery Dreifuss muscular dystrophy and arthrogryposis. Nesprin-1 was thus proposed to mainly contribute to muscle function by controlling nuclei position. However, Nesprin-1′s localisation at sarcomere’s Z-discs, its involvement in organelles’ subcellular localization, as well as the description of numerous isoforms presenting different combinations of Calponin Homology (CH) and KASH domains, suggest that the contribution of Nesprin-1 to muscle functions is more complex. Here, we investigate the roles of Nesprin-1/Msp300 isoforms in muscle function and subcellular organisation using Drosophila larvae as a model. Subsets of Msp300 isoform were down-regulated by muscle-specific RNAi expression and muscle global function and morphology were assessed. We show that nuclei anchoring in mature muscle and global muscle function are disconnected functions associated with different Msp300 isoforms. Our work further uncovers a new and unsuspected role of Msp300 in myofibril registration and nuclei peripheral displacement supported by Msp300 CH containing isoforms, a function performed by Desmin in mammals.


2021 ◽  
Author(s):  
Bibi Nusreen Imambocus ◽  
Fangmin Zhou ◽  
Andrey Formozov ◽  
Annika Wittich ◽  
Federico M. Tenedini ◽  
...  

Author(s):  
Gan Guangming ◽  
Chen Mei ◽  
Zhang Chenchen ◽  
Xie Wei ◽  
Geng Junhua

AbstractThe Drosophila neuromuscular junction is an excellent model for neuroscience research. However, the distribution of neuromuscular junctions is very diffuse, and it is not easy to accurately locate during ultrathin sectioning, which seriously interferes with the ultrastructural analysis under electron microscopy that only has a small field of view. Here, we reported an efficient method for acquiring the ultrastructural picture of neuromuscular junctions in Drosophila larva under electron microscopy. The procedure was as follows: first, the larval sample of body wall muscle was placed between the metal mesh and was dehydrated with alcohol and infiltrated with epoxy resin to prevent the sample from curling or bending, after it was dissected and fixed into thin slices. Second, the sample was embedded in resin into a flat sheet to facilitate the positioning of the muscles. Third, carefully and gradually remove the excess resin and the cuticle of the larvae, cut off both ends of the special body segment, and trim the excess specific muscles according to the recommended ratio of trimming muscles, which would reduce the workload exponentially. At last, the trimmed sample were prepared into serial about 1000 ultrathin sections that was about total 80 microns thickness, and 30–40 sections were gathered into a grid to stain with lead citrate and uranyl acetate. This method could also be applied to the other small and thin samples such as the Drosophila embryo, ventral nerve cord and brain.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Amanda Lesar ◽  
Javan Tahir ◽  
Jason Wolk ◽  
Marc Gershow

Associative learning allows animals to use past experience to predict future events. The circuits underlying memory formation support immediate and sustained changes in function, often in response to a single example. Larval Drosophila is a genetic model for memory formation that can be accessed at molecular, synaptic, cellular, and circuit levels, often simultaneously, but existing behavioral assays for larval learning and memory do not address individual animals, and it has been difficult to form long-lasting memories, especially those requiring synaptic reorganization. We demonstrate a new assay for learning and memory capable of tracking the changing preferences of individual larvae. We use this assay to explore how activation of a pair of reward neurons changes the response to the innately aversive gas carbon dioxide (CO2). We confirm that when coupled to CO2 presentation in appropriate temporal sequence, optogenetic reward reduces avoidance of CO2. We find that learning is switch-like: all-or-none and quantized in two states. Memories can be extinguished by repeated unrewarded exposure to CO2 but are stabilized against extinction by repeated training or overnight consolidation. Finally, we demonstrate long-lasting protein synthesis dependent and independent memory formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Rodríguez ◽  
Finley Grover Thomas ◽  
M. Florencia Camus ◽  
Nick Lane

Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines.


2021 ◽  
pp. 2100938
Author(s):  
Jonas Bittern ◽  
Marit Praetz ◽  
Marie Baldenius ◽  
Christian Klämbt

Development ◽  
2021 ◽  
Author(s):  
Ravi Das ◽  
Shatabdi Bhattacharjee ◽  
Jamin M. Letcher ◽  
Jenna M. Harris ◽  
Sumit Nanda ◽  
...  

Dendrite shape impacts functional connectivity and is mediated by organization and dynamics of cytoskeletal fibers. Identifying molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding mechanistic links between cytoskeletal organization and neuronal function. We identified Formin3 (Form3) as a critical regulator of cytoskeletal architecture in nociceptive sensory neurons in Drosophila larvae. Time course analyses reveal Form3 is cell-autonomously required to promote dendritic arbor complexity. We show that form3 is required for the maintenance of a population of stable dendritic microtubules (MTs), and mutants exhibit defects in the localization of dendritic mitochondria, satellite Golgi, and the TRPA channel Painless. Form3 directly interacts with MTs via FH1-FH2 domains. Mutations in human Inverted Formin 2 (INF2; ortholog of form3) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons result in severe impairment of noxious heat-evoked behaviors. Expression of the INF2 FH1-FH2 domains partially recovers form3 defects in MTs and nocifensive behavior, suggesting conserved functions, thereby providing putative mechanistic insights into potential etiologies of CMT sensory neuropathies.


2021 ◽  
Author(s):  
Goerge Kapali ◽  
Viviane Callier ◽  
Hailey Broeker ◽  
Parth Tank ◽  
Samuel Gascoigne ◽  
...  

In almost all animals, physiologically low oxygen (hypoxia) during development slows growth and reduces adult body size. The developmental mechanisms that determine growth under hypoxic conditions are, however, poorly understood. One hypothesis is that the effect of hypoxia on growth and final body size is a non-adaptive consequence of the cell-autonomous effects of hypoxia on cellular metabolism. Alternatively, the effect may be an adaptive coordinated response mediated through systemic physiological mechanisms. Here we show that the growth and body size response to moderate hypoxia (10% O2) in Drosophila melanogaster is systemically regulated via the steroid hormone ecdysone, acting partially through the insulin-binding protein Imp-L2. Ecdysone is necessary to reduce growth in response to hypoxia: hypoxic growth suppression is ameliorated when ecdysone synthesis is inhibited. This hypoxia-suppression of growth is mediated by the insulin/IGF-signaling (IIS) pathway. Hypoxia reduces systemic IIS activity and the hypoxic growth-response is eliminated in larvae with suppressed IIS. Further, loss of Imp-L2, an ecdysone-response gene that suppresses systemic IIS, significantly reduces the negative effect of hypoxia on final body size. Collectively, these data indicate that growth suppression in hypoxic Drosophila larvae is accomplished by systemic endocrine mechanisms rather than direct suppression of tissue aerobic metabolism.


Sign in / Sign up

Export Citation Format

Share Document