olfactory behavior
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 26)

H-INDEX

26
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mayu Yamada ◽  
Hirono Ohashi ◽  
Koh Hosoda ◽  
Daisuke Kurabayashi ◽  
Shunsuke Shigaki

Most animals survive and thrive due to navigational behavior to reach their destinations. In order to navigate, it is important for animals to integrate information obtained from multisensory inputs and use that information to modulate their behavior. In this study, by using a virtual reality (VR) system for an insect, we investigated how the adult silkmoth integrates visual and wind direction information during female search behavior (olfactory behavior). According to the behavioral experiments using a VR system, the silkmoth had the highest navigational success rate when odor, vision, and wind information were correctly provided. However, the success rate of the search was reduced if the wind direction information provided was different from the direction actually detected. This indicates that it is important to acquire not only odor information but also wind direction information correctly. When the wind is received from the same direction as the odor, the silkmoth takes positive behavior; if the odor is detected but the wind direction is not in the same direction as the odor, the silkmoth behaves more carefully. This corresponds to a modulation of behavior according to the degree of complexity (turbulence) of the environment. We mathematically modeled the modulation of behavior using multisensory information and evaluated it using simulations. The mathematical model not only succeeded in reproducing the actual silkmoth search behavior but also improved the search success relative to the conventional odor-source search algorithm.


2021 ◽  
Author(s):  
Elie Fink ◽  
Matthieu Louis

Animals differ in their appearances and behaviors. While many genetic studies have addressed the origins of phenotypic differences between fly species, we are still lacking a quantitative assessment of the variability in the way different fly species behave. We tackled this question in one of the most robust behaviors displayed by Drosophila: chemotaxis. At the larval stage, Drosophila melanogaster navigate odor gradients by combining four sensorimotor routines in a multilayered algorithm: a modulation of the overall locomotor speed and turn rate; a bias in turning during down-gradient motion; a bias in turning toward the gradient; the local curl of trajectories toward the gradient ("weathervaning"). Using high-resolution tracking and behavioral quantification, we characterized the olfactory behavior of eight closely related species of the Drosophila group in response to 19 ecologically-relevant odors. Significant changes are observed in the receptive field of each species, which is consistent with the rapid evolution of the peripheral olfactory system. Our results reveal substantial inter-species variability in the algorithms directing larval chemotaxis. While the basic sensorimotor routines are shared, their parametric arrangements can vary dramatically across species. The present analysis sets the stage for deciphering the evolutionary relationships between the structure and function of neural circuits directing orientation behaviors in Drosophila.


2021 ◽  
Author(s):  
Xuefei Chang ◽  
Fang Wang ◽  
Qi Fang ◽  
Fei Chen ◽  
Hongwei Yao ◽  
...  

Lupus ◽  
2021 ◽  
pp. 096120332110055
Author(s):  
Chen Chen ◽  
Wei Kong ◽  
Jun Liang ◽  
Jiaming Lu ◽  
Dajie Chen ◽  
...  

Objective To investigate the changes of olfactory function and odor-induced brain activation in patients with systemic lupus erythematosus (SLE) at early stages compared with healthy controls. Materials and Methods Olfactory function and odor-induced brain activation in 12 SLE patients at early stages and 12 age, gender and education matched healthy controls were evaluated using olfactory behavior test and odor-induced task-functional magnetic resonance imaging (task-fMRI). Results No significant differences in olfactory behavior scores (including olfactory threshold, olfactory identification, and olfactory memory) were found in the patients with SLE at early stages compared with the healthy controls, while significantly decreased odor-induced activations in olfactory-related brain regions were observed in the patients. In the SLE group, the patients with better performance in the olfactory threshold test had significantly lower levels of anti-dsDNA antibody. Conclusion The current study demonstrated that significant alterations in odor-induced brain activations occurred prior to measurable olfactory decline in SLE at early stages, which provided a new method for early diagnosis of olfactory dysfunction in SLE.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 62
Author(s):  
Tae-Kwon Son ◽  
Md Munir Mostafiz ◽  
Hwal-Su Hwang ◽  
Nguyen Truong Thạnh ◽  
Kyeong-Yeoll Lee

In various orchard fruit trees, thinning of blossoms and fruits is important to increase fruit size and quality and to promote a new bloom in the following season. Several chemical thinning agents are currently commercially available, but they are inconsistent and produce side effects in crop plants and insect pollinators. Because of environmental concerns, developing alternative eco-friendly bloom thinning agents is necessary. We developed an eco-friendly bloom thinning formulation (BTF) using minerals and extracts of various medicinal plants. Our BTF spray (0.1%, <i>w/v</i>) decreased the number of fruits per tree (46.5%) and fruit yield per tree (81.5%) but increased the fruit weight (196.8%) compared with the control treatment; the spray induced a small number of larger mango fruits in the treated trees. We also investigated the effect of BTF on the olfactory behavior of <i>Apis mellifera</i> L. (Hymenoptera, Apidae), a major insect pollinator. We analyzed the behavioral changes of adult workers at two different concentrations (0.1% and 1%) of nine different BTF spray components using a Y-tube olfactometer. The behavioral responses of honey bees to nine BTF components showed significant differences. However, honey bees showed no clear attraction or repellent behavior towards the tested BTF components. Our results suggest that the newly developed eco-friendly BTF is practically applicable in mango orchards without interrupting honey bee behavior.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ming Chen ◽  
Yunan Chen ◽  
Qingwei Huo ◽  
Lei Wang ◽  
Shuyi Tan ◽  
...  

Abstract Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD.


2021 ◽  
Vol 383 (1) ◽  
pp. 113-123
Author(s):  
Sudeshna Das Chakraborty ◽  
Silke Sachse

AbstractSensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.


2021 ◽  
Vol 7 (1) ◽  
pp. eabd6900
Author(s):  
Katrin Vogt ◽  
David M. Zimmerman ◽  
Matthias Schlichting ◽  
Luis Hernandez-Nunez ◽  
Shanshan Qin ◽  
...  

Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in Drosophila larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.


2020 ◽  
Author(s):  
Diogo Manoel ◽  
Melanie Makhlouf ◽  
Charles J. Arayata ◽  
Abbirami Sathappan ◽  
Sahar Da’as ◽  
...  

ABSTRACTOdor perception in non-humans is poorly understood. Here, we generated the most comprehensive murine olfactory ethological atlas to date, consisting of behavioral responses to a diverse panel of 73 odorants, including 12 at multiple concentrations. These data revealed that the mouse behavior is incredibly diverse, and changes in response to odor identity and intensity. Using only behavioral responses, ~30% of the 73 odorants could be identified with high accuracy (>96%) by a trained classifier. Mouse behavior occupied a low-dimensional space, consistent with analyses of human olfactory perception. While mouse olfactory behavior is difficult to predict from the corresponding human olfactory percept, three fundamental properties are shared: odor valence is the primary axis of olfactory perception; the physicochemical properties of odorants can predict the olfactory percept; and odorant concentration quantitatively and qualitatively impacts olfactory perception. These results provide a template for future comparative studies of olfactory percepts among species.


Sign in / Sign up

Export Citation Format

Share Document