1726 - Warming changes plant-microbial diversity patterns in a grassland ecosystem

Author(s):  
Zhili He
2019 ◽  
Author(s):  
Nana Liu ◽  
Huifeng Hu ◽  
Wenhong Ma ◽  
Ye Deng ◽  
Yuqing Liu ◽  
...  

ABSTRACTBiogeographic patterns and drivers of soil microbial diversity have been extensively studied in the past few decades. However, most research has focused on the topsoil while the subsoil is assumed to have similar microbial diversity patterns as the topsoil. Here we compare patterns and drivers of microbial diversity in the top- (0-10 cm) versus subsoils (30-50 cm) of temperate grasslands in Inner Mongolia of China along an aridity gradient covering a ~1500-km transect from arid to mesic ecosystems. Counter to the conventional assumption, we find contrasting biogeographic patterns of diversity and influencing factors for different bacterial and archaeal groups and between depths. While bacterial diversity increases with increasing aridity, archaeal diversity decreases. Microbial diversity in the topsoil is most strongly influenced by aboveground vegetation, but is most strongly influenced by historical temperature anomaly since the Last Glacial Maximum (LGM) in the subsoil. Moreover, the biogeographic patterns of top-subsoil diversity difference varies for different microbial groups and is overall most strongly influenced by soil fertility difference between depths and historical temperature anomaly. These findings suggest that diversity patterns observed in the topsoil may not be readily applied to the subsoil horizons. For the subsoil in particular, historical climate plays a vital role in the distribution of various microbial groups. Overall, our study provides novel information for understanding and predicting soil microbial diversity patterns at depth.IMPORTANCEExploring the biogeographic patterns of soil microbial diversity is critical for understanding mechanisms underlying the response of soil processes to climate change. Using top- and subsoils from a ~1500-km temperature grassland transect, we find divergent patterns of microbial diversity and its determinants in the top-versus subsoils. Furthermore, we find important legacy effect of historical climate change on the microbial diversity of subsoil but not topsoil. Our findings challenge the conventional assumption of similar geographic patterns of soil microbial diversity along soil profiles and help to improve our understanding of how soil microbial communities may respond to future climate change in different regions with varied climate history.


2007 ◽  
Author(s):  
James M. Tiedje ◽  
Jizhong Zhou ◽  
Anthony Palumbo ◽  
Nathaniel Ostrom ◽  
Terence L. Marsh

Ecology ◽  
2018 ◽  
Vol 99 (11) ◽  
pp. 2455-2466 ◽  
Author(s):  
Andrew T. Nottingham ◽  
Noah Fierer ◽  
Benjamin L. Turner ◽  
Jeanette Whitaker ◽  
Nick J. Ostle ◽  
...  

Author(s):  
I. Moroenyane ◽  
B.M. Tripathi ◽  
J.M. Adams ◽  
S. Chen ◽  
Y. Steinberger

Microbial biogeographical patterns in Mediterranean ecosystems are becoming widely documented; however, the influences of slope aspect on the microbial community composition and structure are poorly understood. This study tested the hypotheses that slope aspect and organic matter content would influence microbial diversity patterns and distribution. Sets of five soil samples were collected from different slope aspects (north slope, south slopes, and valley bottom) and bacterial and fungal communities were examined using the 16S rRNA gene and ITS1 region sequencing, respectively, on the Illumina HiSeq platform. Organic matter and soil moisture varied significantly across all sites but did not influence microbial diversity patterns. Community structure (Bray-Curtis dissimilarity) indicated that each site had a distinct microbial community, and soil moisture along with organic matter modulated the community structure. Relative abundance of key bacterial taxa (Actinobacteria and Bacteriodetes ) and fungal taxa (Ascomycota was significantly influenced by slope aspect. Our results show, for the first time, that the often reported slope aspect dynamics of the soil microbiomes do in fact influence bacterial and fungal community composition and structure. Overall, taken together with previous studies from the region, this study provides novel insight on the physio-chemical properties that modulate the biogeographical patterns of soil microbes and contributes to our knowledge of factors that mediate microbial ecology in Mediterranean ecosystems.


2012 ◽  
Vol 7 (5) ◽  
pp. 1038-1050 ◽  
Author(s):  
Jia-Liang Kuang ◽  
Li-Nan Huang ◽  
Lin-Xing Chen ◽  
Zheng-Shuang Hua ◽  
Sheng-Jin Li ◽  
...  

2019 ◽  
Vol 100 (1) ◽  
pp. e01452 ◽  
Author(s):  
Andrew T. Nottingham ◽  
Noah Fierer ◽  
Benjamin L. Turner ◽  
Jeanette Whitaker ◽  
Nick J. Ostle ◽  
...  

mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Nana Liu ◽  
Huifeng Hu ◽  
Wenhong Ma ◽  
Ye Deng ◽  
Yuqing Liu ◽  
...  

ABSTRACT Biogeographic patterns and drivers of soil microbial diversity have been extensively studied in the past few decades. However, most research has focused on the topsoil, while the subsoil is assumed to have microbial diversity patterns similar to those of the topsoil. Here we compared patterns and drivers of microbial alpha and beta diversity in and between topsoils (0 to 10 cm) and subsoils (30 to 50 cm) of temperate grasslands in Inner Mongolia of China, covering an ∼1,500-km transect along an aridity gradient. Counter to the conventional assumption, we find contrasting biogeographic patterns of diversity and influencing factors for different bacterial and archaeal groups and between depths. While bacterial diversity remains constant or increases with increasing aridity in topsoil and decreases in subsoil, archaeal diversity decreases in topsoil and remains constant in subsoil. Microbial diversity in the topsoil is most strongly influenced by aboveground vegetation and contemporary climate but is most strongly influenced by the factor historical temperature anomaly since the Last Glacial Maximum (LGM) and by soil pH in the subsoil. Moreover, the biogeographic patterns of topsoil-subsoil community dissimilarities vary for different microbial groups and are overall most strongly influenced by soil fertility differences between depths for bacteria and by contemporary climate for archaea. These findings suggest that diversity patterns observed in the topsoil may not be readily applied to the subsoil horizons. For the subsoil in particular, historical climate plays a vital role in the spatial variation of bacterial diversity. Overall, our study provides novel information for understanding and predicting soil microbial diversity patterns at depth. IMPORTANCE Exploring the biogeographic patterns of soil microbial diversity is critical for understanding mechanisms underlying the response of soil processes to climate change. Using top- and subsoils from an ∼1,500-km temperate grassland transect, we find divergent patterns of microbial diversity and its determinants in the topsoil versus the subsoil. Furthermore, we find important and direct legacy effects of historical climate change on the microbial diversity of subsoil yet indirect effects on topsoil. Our findings challenge the conventional assumption of similar geographic patterns of soil microbial diversity along soil profiles and help to improve our understanding of how soil microbial communities may respond to future climate change in different regions with various climate histories.


2013 ◽  
Vol 86 (2) ◽  
pp. 172-184 ◽  
Author(s):  
Sotirios Vasileiadis ◽  
Edoardo Puglisi ◽  
Maria Arena ◽  
Fabrizio Cappa ◽  
Johannes A. van Veen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document