Marjolin’s Ulcer: Mesh Related Vaginal Cutaneous Fistula with Superimposed Osteomyelitis and Neoplastic Transformation

Author(s):  
Jessica Pelkowski ◽  
Shilpa Gajarawala ◽  
Gregory Lewis ◽  
Paul R. Pettit
2017 ◽  
Vol 26 (2) ◽  
pp. 112
Author(s):  
Victor Stoica ◽  
Vasile Lungu ◽  
Carmen M. Preda ◽  
Gabriel Constantinescu ◽  
Anca Hurduc ◽  
...  

.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yuying Qi ◽  
Chaoying Song ◽  
Jiali Zhang ◽  
Chong Guo ◽  
Chengfu Yuan

Background: Long non-coding RNA (LncRNAs), with the length over 200 nucleotides, originate from intergenic, antisense, or promoter-proximal regions, is a large family of RNAs that lack coding capacity. Emerging evidences illustrated that LncRNAs played significant roles in a variety of cellular functions and biological processes in profuse human diseases, especially in cancers. Cancer susceptibility candidate 9 (CASC9), as a member of the LncRNAs group, was firstly found its oncogenic function in esophageal cancer. In following recent studies, a growing amount of human malignancies are verified to be correlated with CASC9, most of which are derived from the squamous epithelium tissue. This present review attempts to highlight the latest insights into the expression, functional roles, and molecular mechanisms of CASC9 in different human malignancies. Methods: In this review, the latest findings related to the pathophysiological processes of CASC9 in human cancers were summarized and analyzed, the associated studies were collected in systematically retrieval of PubMed used lncRNA and CASA9 as keywords. Results: CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depress cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 closely relates to neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of CASC9 in various human cancers. Results: CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depress cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 closely relates to neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of CASC9 in various human cancers. Conclusion: Long non-coding RNACASC9 likely served as useful disease biomarkers or therapy targets that could effectively apply in treatment of different kinds of cancers.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Klaudia Staszak ◽  
Izabela Makałowska

This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document