scholarly journals A note on optimality of quantum circuits over metaplectic basis

2018 ◽  
Vol 18 (1&2) ◽  
pp. 1-17
Author(s):  
Alex Bocharov

Metaplectic quantum basis is a universal multi-qutrit quantum basis, formed by the ternary Clifford group and the axial reflection gate R = |0ih0| + |1ih1| − |2ih2|. It is arguably, a ternary basis with the simplest geometry. Recently Cui, Kliuchnikov, Wang and the Author have proposed a compilation algorithm to approximate any twolevel Householder reflection to precision ε by a metaplectic circuit of R-count at most C log3 (1/ε) + O(log log 1/ε) with C = 8. A new result in this note takes the constant down to C = 5 for non-exceptional target reflections under a certain credible numbertheoretical conjecture. The new method increases the chances of obtaining a truly optimal circuit but may not guarantee the true optimality. Efficient approximations of an important ternary quantum gate proposed by Howard, Campbell and others is also discussed.

Open Physics ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Michal Sedlák ◽  
Martin Plesch

AbstractAny unitary operation in quantum information processing can be implemented via a sequence of simpler steps — quantum gates. However, actual implementation of a quantum gate is always imperfect and takes a finite time. Therefore, searching for a short sequence of gates — efficient quantum circuit for a given operation, is an important task. We contribute to this issue by proposing optimization of the well-known universal procedure proposed by Barenco et al. [Phys. Rev. A 52, 3457 (1995)]. We also created a computer program which realizes both Barenco’s decomposition and the proposed optimization. Furthermore, our optimization can be applied to any quantum circuit containing generalized Toffoli gates, including basic quantum gate circuits.


2007 ◽  
Vol 7 (3) ◽  
pp. 228-242
Author(s):  
P.B.M. Sousa ◽  
R.V. Ramos

Quantum computation has attracted much attention, among other things, due to its potentialities to solve classical NP problems in polynomial time. For this reason, there has been a growing interest to build a quantum computer. One of the basic steps is to implement the quantum circuit able to realize a given unitary operation. This task has been solved using decomposition of unitary matrices in simpler ones till reach quantum circuits having only single-qubits and CNOTs gates. Usually the goal is to find the minimal quantum circuit able to solve a given problem. In this paper we go in a different direction. We propose a general quantum circuit able to implement any specific quantum circuit by just setting correctly the parameters. In other words, we propose a programmable quantum circuit. This opens the possibility to construct a real quantum computer where several different quantum operations can be realized in the same hardware. The configuration is proposed and its optical implementation is discussed.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


1960 ◽  
Vol 23 ◽  
pp. 227-232 ◽  
Author(s):  
P WEST ◽  
G LYLES
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document