Multipartite entanglement and hyperdeterminants

2002 ◽  
Vol 2 (Special) ◽  
pp. 540-555
Author(s):  
A. Miyake ◽  
M. Wadati

We classify multipartite entanglement in a unified manner, focusing on a duality between the set of separable states and that of entangled states. Hyperdeterminants, derived from the duality, are natural generalizations of entanglement measures, the concurrence, 3-tangle for 2, 3 qubits respectively. Our approach reveals how inequivalent multipartite entangled classes of pure states constitute a partially ordered structure under local actions, significantly different from a totally ordered one in the bipartite case. Moreover, the generic entangled class of the maximal dimension, given by the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the \(n \!\geq\! 4\) qubits), contrary to the widely known bipartite or 3-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical \(n\)-partite entangled states. Our classification is also useful for that of mixed states.

Author(s):  
Konstantin Antipin

Abstract Genuine entanglement is the strongest form of multipartite entanglement. Genuinely entangled pure states contain entanglement in every bipartition and as such can be regarded as a valuable resource in the protocols of quantum information processing. A recent direction of research is the construction of genuinely entangled subspaces — the class of subspaces consisting entirely of genuinely entangled pure states. In this paper we present methods of construction of such subspaces including those of maximal possible dimension. The approach is based on the composition of bipartite entangled subspaces and quantum channels of certain types. The examples include maximal subspaces for systems of three qubits, four qubits, three qutrits. We also provide lower bounds on two entanglement measures for mixed states, the concurrence and the convex-roof extended negativity, which are directly connected with the projection on genuinely entangled subspaces.


2008 ◽  
Vol 06 (02) ◽  
pp. 237-253 ◽  
Author(s):  
J. BATLE ◽  
M. CASAS

This work reviews and extends recent results concerning the distribution of entanglement, as well as nonlocality (in terms of inequality violations) in tripartite qubit systems. With recourse to a Monte Carlo generation of pure and mixed states of three-qubits, we explore several features related to the distribution of entanglement (expressed in the form of different measures of multiqubit entanglement based upon bipartitions). Also, special interest is paid to maximally entangled states (such as the GHZ for three-qubits) and W states. This study also sheds some light on the interesting relation existing between some entanglement measures and perfect state discrimination in LOCC measurements relevant to cryptographic protocols. We round off the results by studying the distribution of entanglement between Alice and Bob in a modified teleportation protocol toy model over three-qubit states.


2009 ◽  
Vol 07 (04) ◽  
pp. 829-846
Author(s):  
AVIJIT LAHIRI ◽  
GAUTAM GHOSH ◽  
SANKHASUBHRA NAG

We consider a class of entangled states of a quantum system (S) and a second system (A) where pure states of the former are correlated with mixed states of the latter, and work out the entanglement measure with reference to the nearest separable state. Such "pure-mixed" entanglement is expected when the system S interacts with a macroscopic measuring apparatus in a quantum measurement, where the quantum correlation is destroyed in the process of environment-induced decoherence whereafter only the classical correlation between S and A remains, the latter being large compared to the former. We present numerical evidence that the entangled S–A state drifts towards the nearest separable state through decoherence, with an additional tendency of equimixing among relevant groups of apparatus states.


2006 ◽  
Vol 04 (03) ◽  
pp. 531-540 ◽  
Author(s):  
ANDREAS OSTERLOH ◽  
JENS SIEWERT

We present a method to construct entanglement measures for pure states of multipartite qubit systems. The key element of our approach is an antilinear operator that we call comb in reference to the hairy-ball theorem. For qubits (i.e. spin 1/2) the combs are automatically invariant under SL (2, ℂ). This implies that the filters obtained from the combs are entanglement monotones by construction. We give alternative formulae for the concurrence and the 3-tangle as expectation values of certain antilinear operators. As an application we discuss inequivalent types of genuine four-, five- and six-qubit entanglement.


2012 ◽  
Vol 12 (1&2) ◽  
pp. 63-73
Author(s):  
Z. G. Li ◽  
M. G. Zhao ◽  
S. M. Fei ◽  
H. Fan ◽  
W. M. Liu

We find that the mixed maximally entangled states exist and prove that the form of the mixed maximally entangled states is unique in terms of the entanglement of formation. Moreover, even if the entanglement is quantified by other entanglement measures, this conclusion is still proven right. This result is a supplementary to the generally accepted fact that all maximally entangled states are pure. These states possess important properties of the pure maximally entangled states, for example, these states can be used as a resource for faithful teleportation and they can be distinguished perfectly by local operations and classical communication.


2004 ◽  
Vol 4 (4) ◽  
pp. 252-272
Author(s):  
T.-C. Wei ◽  
M. Ericsson ◽  
P.M. Goldbart ◽  
W.J. Munro

As two of the most important entanglement measures---the entanglement of formation and the entanglement of distillation---have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessary. Here, connections between two other entanglement measures---the relative entropy of entanglement and the geometric measure of entanglement---are investigated. It is found that for arbitrary pure states the latter gives rise to a lower bound on the former. For certain pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of entanglement can be found analytically in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.


2019 ◽  
Vol 17 (01) ◽  
pp. 1950009 ◽  
Author(s):  
M. Mansour ◽  
M. Daoud ◽  
L. Bouhouch

We derive absolutely maximally entangled (AME) states from phase states for a multi-qudit system whose dynamics is governed by a two-qudit interaction Hamiltonian of Heisenberg type. AME states are characterized by being maximally entangled for all bipartitions of the multi-qudit system and present absolute multipartite entanglement. The key ingredient of this approach is the theory of phase states for finite-dimensional systems (qudits). We define further the unitary phase operators of [Formula: see text]-qudit systems and we give next the corresponding separable phase states. Using a qudit–qudit Hamiltonian acting as entangling operator on separable phase states, we generate entangled phase states. Finally, from the labeled entangled phase states, we derive the absolutely maximally entangled states.


2006 ◽  
Vol 04 (02) ◽  
pp. 331-340 ◽  
Author(s):  
FERNANDO G. S. L. BRANDÃO ◽  
REINALDO O. VIANNA

We present a new measure of entanglement for mixed states. It can be approximately computable for every state and can be used to quantify all different types of multipartite entanglement. We show that it satisfies the usual properties of a good entanglement quantifier and derive relations between it and other entanglement measures.


Sign in / Sign up

Export Citation Format

Share Document