scholarly journals Design of catalytic metal-organic assemblies via shape complementarity and conformational constraints in dual curvature ligands

Author(s):  
Cui-Lian Liu ◽  
Eduard Bobylev ◽  
Brice Kauffmann ◽  
Koen Robeyns ◽  
Yann Garcia ◽  
...  

Non-covalent interactions play an essential role in the folding and self-assembly of large biological assemblies. These interactions are not only a driving force for the formation of large structures but also control conformation and com-plementary shapes of subcomponents that promote the diversity of structures and functions of the resulting assemblies. Understanding how non-covalent interactions direct self-assembly and the effect of conformation and complementary shapes on self-assembled structures will help design artificial supramolecular systems with extended components and functions. Herein, we develop a strategy for controlling more complex self-assembly with lower symmetry and flexible building blocks that combine endohedral non-covalent interactions with a dual curvature in the ligand backbone to give additional shape complementarity. A Diels-Alder reaction was used to break the symmetry of the diazaanthracene units of the ligands to give dual curvature ligands with different shapes and endohedral groups (L1-L3). The self-assembly studies of these ligands demonstrated that non-covalent interactions and shape complementary effectively control the self-assembly and enable the design of cages for supramolecular catalysis.

Nanoscale ◽  
2017 ◽  
Vol 9 (48) ◽  
pp. 19191-19200 ◽  
Author(s):  
Jinglin Shen ◽  
Zhi Wang ◽  
Di Sun ◽  
Guokui Liu ◽  
Shiling Yuan ◽  
...  

Supramolecular self-assembly, based on non-covalent interactions, has been employed as an efficient approach to obtain various functional materials from nanometer-sized building blocks, in particular, [Ag6(mna)6]6−, mna = mercaptonicotinate (Ag6-NC).


2021 ◽  
Author(s):  
Serena Gentile ◽  
Erica Del Grosso ◽  
Leonard J. Prins ◽  
Francesco Ricci

Taking advantage of the addressability and programmability of DNA/DNA non-covalent interactions we report here the rational design of orthogonal DNA-based addressable tiles that self-assemble into polymer-like structures that can be reconfigured and reorganized by external inputs. The different tiles share the same 5-nucleotide sticky ends responsible for self-assembly but are rationally designed to contain a specific regulator-binding domain that can be orthogonally targeted by different DNA regulator strands (activators and inhibitors). We show that by sequentially adding specific activators and inhibitors it is possible to re-organize in a dynamic and reversible way the formed polymer-like structures to display well-defined distributions: homopolymers made of a single tile, random polymers in which different tiles are distributed randomly and block structures in which the tiles are organized in segments.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103316-103320 ◽  
Author(s):  
Huiling Zhao ◽  
Shuai Zhang ◽  
Shuang Li ◽  
Xin Song ◽  
Wei Liu ◽  
...  

The self-assembled monolayers of aromatic molecules (pyrene-4,5,9,10-tetraone and phenanthrene-9,10-dione) were investigated at the liquid/solid (1-phenyloctane/graphite) interface using scanning tunneling microscopy, respectively.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Cheng Chen ◽  
Liheng Zheng ◽  
Fucheng Guo ◽  
Zheyu Fang ◽  
Limin Qi

Programing the self-assembly of colloidal nanoparticles into predetermined superstructures represents an attractive strategy to realize functional assemblies and novel nanodevices, but it remains a challenge. Herein, gold nanoarrows (GNAs) showing a distinct convex-concave structure were employed as unique building blocks for programmable self-assembly involving multiple assembly modes. Regioselective adsorption of 1,10-decanedithiol on the vertexes, edges, and facets of GNAs allowed for programmable self-assembly of GNAs with five distinct assembly modes, and regioselective blocking with 1-dodecanethiol followed by adsorption of 1,10-decanedithiol gave rise to programmable self-assembly with six assembly modes including three novel wing-engaged modes. The assembly mode was essentially determined by regioselective adsorption of the dithiol linker dictated by the local curvature together with the shape complementarity of GNAs. This approach reveals how the geometric morphology of nanoparticles affects their regioselective functionalization and drives their self-assembly.


2021 ◽  
Author(s):  
Jonathan Pfeuffer-Rooschüz ◽  
Alessandro Prescimone ◽  
Konrad Tiefenbacher

<div>A new class of macrocycles denoted as “xanthene[n]arenes” was synthesized. In contrast to most other macrocycles, they feature a rigid bowl-shape, required for the synthesis of cavitands and for the self-assembly to molecular capsules via non-covalent interactions. The derivatization potential of the novel macrocycles was demonstrated on the xanthene[3]arene scaffold. Beside a deep cavitand, a modified macrocycle was synthesized that self-assembles into a hydrogen-bonded tetrameric capsule. Both supramolecular systems display host-guest binding properties, demonstrating the potential of xanthene[n]arenes as a new set of macrocyclic building blocks.</div>


2013 ◽  
Vol 1549 ◽  
pp. 143-147
Author(s):  
Yeru Liang ◽  
Ruowen Fu ◽  
Dingcai Wu

ABSTRACTAs an important method for preparing ordered mesoporous polymer and carbon, organic template directed self-assembly is facing challenges because of the weak non-covalent interactions between the organic templates and the building blocks. Herein we developed a novel synthetic procedure based on a reactive template-induced self-assembly to construct ordered mesoporous framework. The aldehyde end-group of reactive template can react with the building blocks (i.e., resol) to form a stable covalent bond during the self-assembly process. This leads to an enhanced interaction between resol and template and thus achieves the formation of ordered mesostructure.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4594
Author(s):  
Rosaria Bruno ◽  
Teresa Mastropietro ◽  
Giovanni De Munno ◽  
Donatella Armentano

Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.


CrystEngComm ◽  
2015 ◽  
Vol 17 (25) ◽  
pp. 4680-4690 ◽  
Author(s):  
Prateeti Chakraborty ◽  
Suranjana Purkait ◽  
Sandip Mondal ◽  
Antonio Bauzá ◽  
Antonio Frontera ◽  
...  

The role of non-covalent interactions in the self-assembly of Schiff-base complexes of ZnII, CuII and NiII has been investigated experimentally and theoretically with especial attention to unconventional C–H⋯π interactions involving pseudohalide coligands.


2021 ◽  
Author(s):  
Serena Gentile ◽  
Erica Del Grosso ◽  
Leonard J. Prins ◽  
Francesco Ricci

Taking advantage of the addressability and programmability of DNA/DNA non-covalent interactions we report here the rational design of orthogonal DNA-based addressable tiles that self-assemble into polymer-like structures that can be reconfigured and reorganized by external inputs. The different tiles share the same 5-nucleotide sticky ends responsible for self-assembly but are rationally designed to contain a specific regulator-binding domain that can be orthogonally targeted by different DNA regulator strands (activators and inhibitors). We show that by sequentially adding specific activators and inhibitors it is possible to re-organize in a dynamic and reversible way the formed polymer-like structures to display well-defined distributions: homopolymers made of a single tile, random polymers in which different tiles are distributed randomly and block structures in which the tiles are organized in segments.


Sign in / Sign up

Export Citation Format

Share Document