scholarly journals Is [ReCl4(CN)2]2− a good Building Block for Single Molecule Magnets? A Theoretical Investigation.

Author(s):  
Christoph van Wüllen ◽  
Eva M. V. Kessler

Building blocks containing $5d$ spin centres are promising for constructing single molecule magnets due to their large spin-orbit interaction, but experimental and computational results obtained so far indicate that this might not be the case for Re$^\textrm{IV}$ centres in an octahedral environment. Density functional results obtained in this work for [ReCl$_4$(CN)$_2$]$^{2-}$ and trinuclear complexes formed by attaching Mn$^\textrm{II}$ centres to the cyano ligands indicate that zero field splitting in such complexes exhibits large rhombicity (which leads to fast relaxation of the magnetisation) even if there are only small distortions from an ideal geometry with a four-fold symmetry axis. This is already apparent if second-order spin-orbit perturbation theory is applied but even more pronounced if higher-order spin-orbit effects are included as well, as demonstrated by wavefunction based calculations. Computational results are cast into a ligand field model and these simulations show that especially a distortion which is not along the $C_4/C_2$ axeshas a large effect on the rhombicity. Quantum simulations on these complexes are difficult because the zero field splitting strongly depends on the energetic position of the low-lying doublets from the $t_{2g}^3$ configuration.

2018 ◽  
Vol 4 (4) ◽  
pp. 43 ◽  
Author(s):  
Luca Rigamonti ◽  
Manuela Vaccari ◽  
Fabrizio Roncaglia ◽  
Carlo Baschieri ◽  
Alessandra Forni

In continuation of our work on supramolecular architectures of single-molecule magnets (SMMs) as a promising strategy in developing their magnetic performance, in this paper we report the synthesis and single crystal X-ray structure of the centered triangular tetrairon(III) SMM, [Fe4(PhpPy)2(dpm)6], Fe4 (Hdpm = dipivaloylmethane, H3PhpPy = 2-(hydroxymethyl)-2-(4-(pyridine-4-yl)phenyl)propane-1,3-diol), and its assembly in the coordination polymer {[Fe4(PhpPy)2(dpm)6Ag](ClO4)}n, Fe4Ag, upon reaction with silver(I) perchlorate. Thanks to the presence of the pyridyl rings on the two tripodal ligands, Fe4 behaves as divergent ditopic linker, and due to the Fe4:AgClO4 1:1 ratio, Fe4Ag probably possesses a linear arrangement in which silver(I) ions are linearly coordinated by two nitrogen atoms, forming 1D chains whose positive charge is balanced by the perchlorate anions. The stabilization of such a polymeric structure can be ascribed to the long distance between the two donor nitrogen atoms (23.4 Å) and their donor power. Fe4Ag shows slow relaxation of the magnetization which follows a thermally activated process with Ueff/kB = 11.17(18) K, τ0 = 2.24(17) 10−7 s in zero field, and Ueff/kB = 14.49(5) K, τ0 = 3.88(8) 10−7 s in 1-kOe applied field, in line with what reported for tetrairon(III) SMMs acting as building blocks in polymeric structures.


2018 ◽  
Author(s):  
Florian Liedy ◽  
Robbie McNab ◽  
Julien Eng ◽  
Ross Inglis ◽  
Thomas Penfold ◽  
...  

<p>Single-Molecule Magnets (SMMs) are metal complexes with two degenerate magnetic ground states arising from a non-zero spin ground state and a zero-field splitting. SMMs are promising for future applications in data storage, however, to date the ability to manipulate the spins using optical stimulus is lacking. Here, we have explored the ultrafast dynamics occurring after photoexcitation of two structurally related Mn(III)-based SMMs, whose magnetic anisotropy is closely related to the Jahn-Teller distortion, and demonstrate coherent modulation of the axial anisotropy on a femtosecond timescale. Ultrafast transient absorption spectroscopy in solution reveals oscillations superimposed on the decay traces with corresponding energies around 200 cm<sup>−1</sup>, coinciding with a vibrational mode along the Jahn-Teller axis. Our results provide a non-thermal, coherent mechanism to dynamically control the magnetisation in SMMs and open up new molecular design challenges to enhance the change in anisotropy in the excited state, which is essential for future ultrafast magneto-optical data storage devices.</p>


1972 ◽  
Vol 27 (7) ◽  
pp. 1082-1093
Author(s):  
R Krieger ◽  
J Voitländer

AbstractThe zero-field splitting and g-values of manganocene and chromocene have been calculated. The wave functions were obtained by means of a self-consistent charge extended Huckel method. The calculated values g||=2.0034 and g⊥ = 2.0033 of manganocene agree fairly well with the experi­mental results obtained from ESR measurements. The very large computed zero-field splitting D= -0.24 cm-1 explains that there has been observed only one ESR transition though mangano­cene is in a spin-5/2 state. For chromocene no ESR transition has been found until now. We therefore studied the splitting of the orbitally degenerate ground state by the combined action of spin-orbit coupling and low-symmetry perturbation. The predicted splitting is strongly dependent on the magnitude of the rhombic distortion compared to the spin-orbit interaction. The g-values are highly anisotropic, with g|| =2.49 and g⊥ =1.97


2014 ◽  
Vol 16 (19) ◽  
pp. 9171-9181 ◽  
Author(s):  
Kenji Sugisaki ◽  
Kazuo Toyota ◽  
Kazunobu Sato ◽  
Daisuke Shiomi ◽  
Masahiro Kitagawa ◽  
...  

The CASSCF and hybrid CASSCF–MRMP2 methods reproduce the ZFS tensors of spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin–orbit terms of the tensors.


2011 ◽  
Vol 13 (15) ◽  
pp. 6970 ◽  
Author(s):  
Kenji Sugisaki ◽  
Kazuo Toyota ◽  
Kazunobu Sato ◽  
Daisuke Shiomi ◽  
Masahiro Kitagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document