Adhesion and Surface Layers on Silicon Anodes Suppress Formation of c-Li3.75Si and Solid Electrolyte Interphase

Author(s):  
Hezhen Xie ◽  
Sayed Youssef Sayed ◽  
W. Peter Kalisvaart ◽  
Simon Jakob Schaper ◽  
Peter Müller-Buschbaum ◽  
...  

<div>The formation of c-Li3.75Si is known to be detrimental to silicon anodes in lithium-ion batteries. To suppress the formation of this crystalline phase and improve the electrochemical performance of Sibased anodes, three approaches were amalgamated: addition of a nickel adhesion sublayer, alloying of the silicon with titanium, and the addition of either carbon or TiO2 as a capping layer. The silicon-based films were analyzed by a suite of methods, including scanning electron microscopy (SEM) and a variety of electrochemical methods, as well as X-ray photoelectron spectroscopy (XPS) to provide insights into the composition of the resulting solid electrolyte interphase (SEI). A nickel adhesion layer decreased the extent of delamination of the silicon from the underlying copper substrate, compared to Si deposited directly on Cu, which resulted in less capacity loss. Alloying of silicon with titanium (85% silicon, 15% titanium) further increased the stability. Finally, capping these multilayer electrodes with either a thin 10 nm layer of carbon or TiO2 resulted in the best electrode behavior, and lowest cumulative relative irreversible capacity. TiO2 is slightly more effective in enhancing the capacity retention, most likely due to differences in the resulting solid electrolyte interphase (SEI). The combination of an adhesion layer, alloying, and surface coatings shows a cumulative suppression of the formation of c-Li3.75Si and SEI, resulting in the greatest improvement of capacity retention when all three are incorporated together. However, these strategies appear to only delay the onset of the c-Li3.75Si phase; eventually, the c-Li3.75Si phase will form, and at that point, the rate of capacity degradation of all the electrodes becomes similar.</div>

2019 ◽  
Author(s):  
Hezhen Xie ◽  
Sayed Youssef Sayed ◽  
W. Peter Kalisvaart ◽  
Simon Jakob Schaper ◽  
Peter Müller-Buschbaum ◽  
...  

<div>The formation of c-Li3.75Si is known to be detrimental to silicon anodes in lithium-ion batteries. To suppress the formation of this crystalline phase and improve the electrochemical performance of Sibased anodes, three approaches were amalgamated: addition of a nickel adhesion sublayer, alloying of the silicon with titanium, and the addition of either carbon or TiO2 as a capping layer. The silicon-based films were analyzed by a suite of methods, including scanning electron microscopy (SEM) and a variety of electrochemical methods, as well as X-ray photoelectron spectroscopy (XPS) to provide insights into the composition of the resulting solid electrolyte interphase (SEI). A nickel adhesion layer decreased the extent of delamination of the silicon from the underlying copper substrate, compared to Si deposited directly on Cu, which resulted in less capacity loss. Alloying of silicon with titanium (85% silicon, 15% titanium) further increased the stability. Finally, capping these multilayer electrodes with either a thin 10 nm layer of carbon or TiO2 resulted in the best electrode behavior, and lowest cumulative relative irreversible capacity. TiO2 is slightly more effective in enhancing the capacity retention, most likely due to differences in the resulting solid electrolyte interphase (SEI). The combination of an adhesion layer, alloying, and surface coatings shows a cumulative suppression of the formation of c-Li3.75Si and SEI, resulting in the greatest improvement of capacity retention when all three are incorporated together. However, these strategies appear to only delay the onset of the c-Li3.75Si phase; eventually, the c-Li3.75Si phase will form, and at that point, the rate of capacity degradation of all the electrodes becomes similar.</div>


Author(s):  
Kuber Mishra ◽  
Wu Xu ◽  
Mark H. Engelhard ◽  
Ruiguo Cao ◽  
Jie Xiao ◽  
...  

A thin and mechanically stable solid electrolyte interphase (SEI) is desirable for a stable cyclic performance in a lithium ion battery. For the electrodes that undergo a large volume expansion, such as Si, Ge, and Sn, the presence of a robust SEI layer can improve the capacity retention. In this work, the role of solvent choice on the electrochemical performance of Ge electrode is presented by a systematic comparison of the SEI layers in ethylene carbonate (EC)-based and fluoroethylene carbonate (FEC)-based electrolytes. The results show that the presence of FEC as a cosolvent in a binary or ternary solvent electrolyte results in an excellent capacity retention of ∼85% after 200 cycles at the current density of 500 mA g−1; while EC-based electrode suffers a rapid capacity degradation with a capacity retention of just 17% at the end of 200 cycles. Post analysis by an extensive use of X-ray photoelectron spectroscopy (XPS) was carried out, which showed that the presence of Li2O in FEC-based SEIs was the origin for the improved electrochemical performance.


2016 ◽  
Vol 18 (12) ◽  
pp. 8643-8653 ◽  
Author(s):  
Yukihiro Okuno ◽  
Keisuke Ushirogata ◽  
Keitaro Sodeyama ◽  
Yoshitaka Tateyama

Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs.


2018 ◽  
Vol 130 (14) ◽  
pp. 3718-3722 ◽  
Author(s):  
Zhiqiang Zhu ◽  
Yuxin Tang ◽  
Zhisheng Lv ◽  
Jiaqi Wei ◽  
Yanyan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document