Data-Driven Many-Body Models with Chemical Accuracy for CH4/H2O Mixtures

Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>

2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Pushp Bajaj ◽  
Marc Riera ◽  
Jason K. Lin ◽  
Yaira E. Mendoza Montijo ◽  
Jessica Gazca ◽  
...  

<div> <div> <div> <p>Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide-water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X−(H2O)n=3−6 clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride-water clusters, this is in contrast with previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable to reproduce the subtle interplay between halide-water and water-water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Pushp Bajaj ◽  
Marc Riera ◽  
Jason K. Lin ◽  
Yaira E. Mendoza Montijo ◽  
Jessica Gazca ◽  
...  

<div> <div> <div> <p>Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide-water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X−(H2O)n=3−6 clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride-water clusters, this is in contrast with previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable to reproduce the subtle interplay between halide-water and water-water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration. </p> </div> </div> </div>


1993 ◽  
Vol 97 (46) ◽  
pp. 12073-12082 ◽  
Author(s):  
Fei Gao ◽  
Roy L. Johnston ◽  
John N. Murrell

2020 ◽  
Author(s):  
Marc Riera ◽  
Justin J. Talbot ◽  
Ryan P. Steele ◽  
Francesco Paesani

<div> <div> <div> <p>A quantitative description of the interactions between ions and water is key to characterizing the role played by ions in mediating fundamental processes that take place in aqueous environments. At the molecular level, vibrational spectroscopy provides a unique means to probe the multidimensional potential energy surface of small ion−water clusters. In this study, we combine the MB-nrg potential energy functions recently developed for ion−water interactions with perturbative corrections to vibrational self-consistent field theory and the local-monomer approximation to disentangle many-body effects on the stability and vibrational structure of the Cs+(H2O)3 cluster. Since several low-energy, thermodynamically accessible isomers exist for Cs+(H2O)3, even small changes in the description of the underlying potential energy surface can result in large differences in the relative stability of the various isomers. Our analysis demonstrates that a quantitative account for three-body energies and explicit treatment of cross-monomer vibrational couplings are required to reproduce the experimental spectrum. </p> </div> </div> </div>


2021 ◽  
Vol 155 (12) ◽  
pp. 124801
Author(s):  
Ethan F. Bull-Vulpe ◽  
Marc Riera ◽  
Andreas W. Götz ◽  
Francesco Paesani

2020 ◽  
Author(s):  
Marc Riera ◽  
Justin J. Talbot ◽  
Ryan P. Steele ◽  
Francesco Paesani

<div> <div> <div> <p>A quantitative description of the interactions between ions and water is key to characterizing the role played by ions in mediating fundamental processes that take place in aqueous environments. At the molecular level, vibrational spectroscopy provides a unique means to probe the multidimensional potential energy surface of small ion−water clusters. In this study, we combine the MB-nrg potential energy functions recently developed for ion−water interactions with perturbative corrections to vibrational self-consistent field theory and the local-monomer approximation to disentangle many-body effects on the stability and vibrational structure of the Cs+(H2O)3 cluster. Since several low-energy, thermodynamically accessible isomers exist for Cs+(H2O)3, even small changes in the description of the underlying potential energy surface can result in large differences in the relative stability of the various isomers. Our analysis demonstrates that a quantitative account for three-body energies and explicit treatment of cross-monomer vibrational couplings are required to reproduce the experimental spectrum. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document