ion hydration
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 31)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Yuanfu Yue ◽  
Vighneswara Siva Santosh Kumar Kondeti ◽  
Nader Sadeghi ◽  
Peter Bruggeman

Abstract While plasma-liquid interactions have been an important focus in the plasma research community, the impact of the strong coupling between plasma and liquid on plasma properties and processes remains not fully understood. In this work, we report on the impact of the applied voltage, pulse width and liquid conductivity on the plasma morphology and the OH generation for a positive pulsed DC atmospheric pressure plasma jet with He-0.1% H2O mixture interacting with a liquid cathode. We adopted diagnostic techniques of fast imaging, 2D laser induced fluorescence (LIF) of OH and Thomson scattering spectroscopy. We show that plasma instabilities and enhanced evaporation occur and have a significant impact on the OH generation. At elevated plasma energies, it is found that the plasma contracts due to a thermal instability through Ohmic heating and the contraction coincides with a depletion in the OH density in the core due to electron impact dissociation. For lower plasma energies, the instability is suppressed/delayed by the equivalent series resistor of the liquid electrode. An estimation of the energy flux from the plasma to the liquid shows that the energy flux of the ions released into the liquid by positive ion hydration is dominant, and significantly larger than the energy needed to evaporate sufficient amount of water to account for the measured H2O concentration increase near the plasma-liquid interface.


Author(s):  
V. S. Soldatov ◽  
T. V. Bezyazychnaya ◽  
E. G. Kosandrovich

Based on the data of ab initio calculation of the structure of (RSO3)2Mg (H2O)18 and (RSO3Rb)2(H2O)16 clusters, which simulate the structure of swollen sulfostyrene ion exchangers in the corresponding ionic forms and a water cluster of comparable size, the numbers of water molecules directly bound to cations and their coordination numbers, including the oxygen atoms of the sulfonic groups linked to the cation, were calculated. It is shown that the first molecular layer around the magnesium ion is formed from water molecules with the highest binding energy with the cluster, and around the rubidium ion – from the molecules of the nearest environment with the lowest binding energies. This is explained by the fact that the transfer of water molecules from its volume to magnesium hydrate is energetically favorable, but not to rubidium hydrate. Therefore, the magnesium ion builds its hydrate mainly from water molecules with the highest binding energy in order to obtain the greatest energy gain, and the rubidium ion – from molecules with the lowest energy, which provides the smallest energy loss.


2021 ◽  
Vol 118 (47) ◽  
pp. e2108568118
Author(s):  
Serena R. Alfarano ◽  
Simone Pezzotti ◽  
Christopher J. Stein ◽  
Zhou Lin ◽  
Federico Sebastiani ◽  
...  

The double layer at the solid/electrolyte interface is a key concept in electrochemistry. Here, we present an experimental study combined with simulations, which provides a molecular picture of the double-layer formation under applied voltage. By THz spectroscopy we are able to follow the stripping away of the cation/anion hydration shells for an NaCl electrolyte at the Au surface when decreasing/increasing the bias potential. While Na+ is attracted toward the electrode at the smallest applied negative potentials, stripping of the Cl− hydration shell is observed only at higher potential values. These phenomena are directly measured by THz spectroscopy with ultrabright synchrotron light as a source and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations.


2021 ◽  
Vol 155 (6) ◽  
pp. 064501
Author(s):  
Gennady N. Chuev ◽  
Marina V. Fedotova ◽  
Marat Valiev

Author(s):  
Takao Tsuneda ◽  
Tetsuya Taketsugu

The H2O2 decomposition reaction mechanism based on the production of a de facto Fe+ ion hydration complex is strongly supported by a simple test based on the Gibbs energies considering the O–O bond dissociation of H2O2.


2020 ◽  
Vol 117 (48) ◽  
pp. 30151-30158
Author(s):  
Yu Shi ◽  
Thomas L. Beck

With a goal of determining an absolute free energy scale for ion hydration, quasi-chemical theory and ab initio quantum mechanical simulations are employed to obtain an accurate value for the bulk hydration free energy of the Na+ion. The free energy is partitioned into three parts: 1) the inner-shell or chemical contribution that includes direct interactions of the ion with nearby waters, 2) the packing free energy that is the work to produce a cavity of size λ in water, and 3) the long-range contribution that involves all interactions outside the inner shell. The interfacial potential contribution to the free energy resides in the long-range term. By averaging cation and anion data for that contribution, cumulant terms of all odd orders in the electrostatic potential are removed. The computed total is then the bulk hydration free energy. Comparison with the experimentally derived real hydration free energy produces an effective surface potential of water in the range −0.4 to −0.5 V. The result is consistent with a variety of experiments concerning acid–base chemistry, ion distributions near hydrophobic interfaces, and electric fields near the surface of water droplets.


2020 ◽  
Vol 355 ◽  
pp. 136758 ◽  
Author(s):  
Ángel Yustres ◽  
Rubén López-Vizcaíno ◽  
Virginia Cabrera ◽  
Manuel A. Rodrigo ◽  
Vicente Navarro

2020 ◽  
Vol 313 ◽  
pp. 113563
Author(s):  
Marina V. Fedotova ◽  
Sergey E. Kruchinin ◽  
Gennady N. Chuev

Sign in / Sign up

Export Citation Format

Share Document