scholarly journals Individual & Collective Human Intelligence in Drug Design: Evaluating the Search Strategy

Author(s):  
Giovanni Cincilla ◽  
Simone Masoni ◽  
Jascha Blobel

In recent years, individual and collective human intelligence, defined as the knowledge, skills, reasoning and intuition of individuals and groups, have been used in combination with computer algorithms to solve complex scientific problems. Such approach was successfully used in different research fields such as: structural biology, comparative genomics, macromolecular crystallography and RNA design. Herein we describe an attempt to use a similar approach in small-molecule drug discovery, specifically to drive search strategies of de novo drug design. This is assessed with a case study that consists of a series of public experiments in which participants had to explore the huge chemical space in silico to find desired molecules (e.g. drug candidates). The objectives of this case study are: assess human intelligence in chemical space exploration problems; compare the performance of individual and collective human intelligence; and contrast human and artificial intelligence achievements in de novo drug design. To our knowledge this is the first time that human intelligence is being evaluated for such a task in drug discovery and, of similar importance, compared to the performance of artificial intelligence (e.g. machine learning, genetic algorithms), giving first insights towards their differences and uniqueness.

2020 ◽  
Author(s):  
Giovanni Cincilla ◽  
Simone Masoni ◽  
Jascha Blobel

In recent years, individual and collective human intelligence, defined as the knowledge, skills, reasoning and intuition of individuals and groups, have been used in combination with computer algorithms to solve complex scientific problems. Such approach was successfully used in different research fields such as: structural biology, comparative genomics, macromolecular crystallography and RNA design. Herein we describe an attempt to use a similar approach in small-molecule drug discovery, specifically to drive search strategies of de novo drug design. This is assessed with a case study that consists of a series of public experiments in which participants had to explore the huge chemical space in silico to find desired molecules (e.g. drug candidates). The objectives of this case study are: assess human intelligence in chemical space exploration problems; compare the performance of individual and collective human intelligence; and contrast human and artificial intelligence achievements in de novo drug design. To our knowledge this is the first time that human intelligence is being evaluated for such a task in drug discovery and, of similar importance, compared to the performance of artificial intelligence (e.g. machine learning, genetic algorithms), giving first insights towards their differences and uniqueness.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Giovanni Cincilla ◽  
Simone Masoni ◽  
Jascha Blobel

AbstractIn recent years, individual and collective human intelligence, defined as the knowledge, skills, reasoning and intuition of individuals and groups, have been used in combination with computer algorithms to solve complex scientific problems. Such approach was successfully used in different research fields such as: structural biology, comparative genomics, macromolecular crystallography and RNA design. Herein we describe an attempt to use a similar approach in small-molecule drug discovery, specifically to drive search strategies of de novo drug design. This is assessed with a case study that consists of a series of public experiments in which participants had to explore the huge chemical space in silico to find predefined compounds by designing molecules and analyzing the score associate with them. Such a process may be seen as an instantaneous surrogate of the classical design-make-test cycles carried out by medicinal chemists during the drug discovery hit to lead phase but not hindered by long synthesis and testing times. We present first findings on (1) assessing human intelligence in chemical space exploration, (2) comparing individual and collective human intelligence performance in this task and (3) contrasting some human and artificial intelligence achievements in de novo drug design.


2021 ◽  
Author(s):  
Giovanni Cincilla ◽  
Simone Masoni ◽  
Jascha Blobel

<p>In recent years, individual and collective human intelligence, defined as the knowledge, skills, reasoning and intuition of individuals and groups, have been used in combination with computer algorithms to solve complex scientific problems. Such approach was successfully used in different research fields such as: structural biology, comparative genomics, macromolecular crystallography and RNA design. Herein we describe an attempt to use a similar approach in small-molecule drug discovery, specifically to drive search strategies of <i>de novo</i> drug design. This is assessed with a case study that consists of a series of public experiments in which participants had to explore the huge chemical space <i>in silico</i> to find predefined compounds by designing molecules and analyzing the score associate with them. Such a process may be seen as an instantaneous surrogate of the classical design-make-test cycles carried out by medicinal chemists during the drug discovery hit to lead phase but not hindered by long synthesis and testing times. The objectives of this case study are to give the first insights towards: the assessment of human intelligence in chemical space exploration problems; compare the performance of individual and collective human intelligence in such a problems; and also contrast some human and artificial intelligence achievements in<em> </em><em><i>de novo</i></em> drug design.</p>


2020 ◽  
Author(s):  
Francesca Grisoni ◽  
Berend Huisman ◽  
Alexander Button ◽  
Michael Moret ◽  
Kenneth Atz ◽  
...  

<p>Automation of the molecular design-make-test-analyze cycle speeds up the identification of hit and lead compounds for drug discovery. Using deep learning for computational molecular design and a customized microfluidics platform for on-chip compound synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical space defined by known LXRα agonists, and to suggest structural analogs of known ligands and novel molecular cores. To further the design of lead-like molecules and ensure compatibility with automated on-chip synthesis, this chemical space was confined to the set of virtual products obtainable from 17 different one-step reactions. Overall, 25 <i>de novo</i> generated compounds were successfully synthesized in flow via formation of sulfonamide, amide bond, and ester bond. First-pass <i>in vitro</i> activity screening of the crude reaction products in hybrid Gal4 reporter gene assays revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch re-synthesis, purification, and re-testing of 14 of these compounds confirmed that 12 of them were potent LXRα or LXRβ agonists. These results support the utilization of the proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence and miniaturized bench-top synthesis.<b></b></p>


Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

With this application note we aim to offer the community a production-ready tool for de novo design. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. By releasing the code we are aiming to facilitate the research on using generative methods on drug discovery problems and to promote the collaborative efforts in this area so that it can be used as an interaction point for future scientific collaborations.


2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

With this application note we aim to offer the community a production-ready tool for de novo design. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. By releasing the code we are aiming to facilitate the research on using generative methods on drug discovery problems and to promote the collaborative efforts in this area so that it can be used as an interaction point for future scientific collaborations.


2021 ◽  
Vol 7 (24) ◽  
pp. eabg3338
Author(s):  
Francesca Grisoni ◽  
Berend J. H. Huisman ◽  
Alexander L. Button ◽  
Michael Moret ◽  
Kenneth Atz ◽  
...  

Automating the molecular design-make-test-analyze cycle accelerates hit and lead finding for drug discovery. Using deep learning for molecular design and a microfluidics platform for on-chip chemical synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical space of known LXRα agonists and generate novel molecular candidates. To ensure compatibility with automated on-chip synthesis, the chemical space was confined to the virtual products obtainable from 17 one-step reactions. Twenty-five de novo designs were successfully synthesized in flow. In vitro screening of the crude reaction products revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch resynthesis, purification, and retesting of 14 of these compounds confirmed that 12 of them were potent LXR agonists. These results support the suitability of the proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence and miniaturized bench-top synthesis.


2020 ◽  
Author(s):  
Francesca Grisoni ◽  
Berend Huisman ◽  
Alexander Button ◽  
Michael Moret ◽  
Kenneth Atz ◽  
...  

<p>Automation of the molecular design-make-test-analyze cycle speeds up the identification of hit and lead compounds for drug discovery. Using deep learning for computational molecular design and a customized microfluidics platform for on-chip compound synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical space defined by known LXRα agonists, and to suggest structural analogs of known ligands and novel molecular cores. To further the design of lead-like molecules and ensure compatibility with automated on-chip synthesis, this chemical space was confined to the set of virtual products obtainable from 17 different one-step reactions. Overall, 25 <i>de novo</i> generated compounds were successfully synthesized in flow via formation of sulfonamide, amide bond, and ester bond. First-pass <i>in vitro</i> activity screening of the crude reaction products in hybrid Gal4 reporter gene assays revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch re-synthesis, purification, and re-testing of 14 of these compounds confirmed that 12 of them were potent LXRα or LXRβ agonists. These results support the utilization of the proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence and miniaturized bench-top synthesis.<b></b></p>


2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

With this application note we aim to offer the community a production-ready tool for de novo design. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. By releasing the code we are aiming to facilitate the research on using generative methods on drug discovery problems and to promote the collaborative efforts in this area so that it can be used as an interaction point for future scientific collaborations.


2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

With this application note we aim to offer the community a production-ready tool for de novo design. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. By releasing the code we are aiming to facilitate the research on using generative methods on drug discovery problems and to promote the collaborative efforts in this area so that it can be used as an interaction point for future scientific collaborations.


Sign in / Sign up

Export Citation Format

Share Document