de novo drug design
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 98)

H-INDEX

21
(FIVE YEARS 7)

2022 ◽  
Vol 72 ◽  
pp. 135-144
Author(s):  
Mingyang Wang ◽  
Zhe Wang ◽  
Huiyong Sun ◽  
Jike Wang ◽  
Chao Shen ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Alan Kerstjens ◽  
Hans De Winter

AbstractGiven an objective function that predicts key properties of a molecule, goal-directed de novo molecular design is a useful tool to identify molecules that maximize or minimize said objective function. Nonetheless, a common drawback of these methods is that they tend to design synthetically unfeasible molecules. In this paper we describe a Lamarckian evolutionary algorithm for de novo drug design (LEADD). LEADD attempts to strike a balance between optimization power, synthetic accessibility of designed molecules and computational efficiency. To increase the likelihood of designing synthetically accessible molecules, LEADD represents molecules as graphs of molecular fragments, and limits the bonds that can be formed between them through knowledge-based pairwise atom type compatibility rules. A reference library of drug-like molecules is used to extract fragments, fragment preferences and compatibility rules. A novel set of genetic operators that enforce these rules in a computationally efficient manner is presented. To sample chemical space more efficiently we also explore a Lamarckian evolutionary mechanism that adapts the reproductive behavior of molecules. LEADD has been compared to both standard virtual screening and a comparable evolutionary algorithm using a standardized benchmark suite and was shown to be able to identify fitter molecules more efficiently. Moreover, the designed molecules are predicted to be easier to synthesize than those designed by other evolutionary algorithms. Graphical Abstract


Author(s):  
Ashfaq Ur Rehman ◽  
Shaoyong Lu ◽  
Abdul Aziz Khan ◽  
Beenish Khurshid ◽  
Salman Rasheed ◽  
...  

2021 ◽  
Author(s):  
Michal Pikusa ◽  
Olivier Rene ◽  
Sarah Williams ◽  
Yen-Liang Chen ◽  
Eric Martin ◽  
...  

Designing novel molecules with targeted biological activities and optimized physicochemical properties is a challenging endeavor in drug discovery. Recent developments in artificial intelligence have enhanced the early steps of de novo drug design and compound optimization. Herein, we present a generative adversarial network trained to design new chemical matter that satisfies a given biological signature. Our model, called pqsar2cpd, is based on the activity of compounds across multiple assays obtained via pQSAR (profile-quantitative structure-activity relationships). We applied pqsar2cpd to Chagas disease and designed a novel molecule that was experimentally confirmed to inhibit growth of parasites in vitro at low micromolar concentrations. Altogether, this approach bridges chemistry and biology into one single framework for the design of novel molecules with promising biological activity.


Author(s):  
Adarsh Sahu ◽  
Jyotika Mishra ◽  
Namrata Kushwaha

: The advancement of computing and technology has invaded all the dimensions of science. Artificial intelligence (AI) is one core branch of Computer Science, which has percolated to all the arenas of science and technology, from core engineering to medicines. Thus, AI has found its way for application in the field of medicinal chemistry and heath care. The conventional methods of drug design have been replaced by computer-aided designs of drugs in recent times. AI is being used extensively to improve the design techniques and required time of the drugs. Additionally, the target proteins can be conveniently identified using AI, which enhances the success rate of the designed drug. The AI technology is used in each step of the drug designing procedure, which decreases the health hazards related to preclinical trials and also reduces the cost substantially. The AI is an effective tool for data mining based on the huge pharmacological data and machine learning process. Hence, AI has been used in de novo drug design, activity scoring, virtual screening and in silico evaluation in the properties (absorption, distribution, metabolism, excretion and toxicity) of a drug molecule. Various pharmaceutical companies have teamed up with AI companies for faster progress in the field of drug development, along with the healthcare system. The review covers various aspects of AI (Machine learning, Deep learning, Artificial neural networks) in drug design. It also provides a brief overview of the recent progress by the pharmaceutical companies in drug discovery by associating with different AI companies.


2021 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman W. T. van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard J. P. van Westen

Due to the large drug-like chemical space available to search for feasible drug-like molecules, rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified. With the rapid growth of the application of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work, we proposed a method named DrugEx, which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives similar to other known methods and does not allow users to input any prior information (i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. In this work, the Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules we proposed a novel positional encoding for each atom and bond based on an adjacency matrix to extend the architecture of the Transformer. Each molecule was generated by growing and connecting procedures for the fragments in the given scaffold that were unified into one model. Moreover, we trained this generator under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, our proposed method was applied to design ligands for the adenosine A2A receptor (A2AAR) and compared with SMILES-based methods. The results demonstrated the effectiveness of our method in that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A2AAR with given scaffolds.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012125
Author(s):  
T Sesha Sai Aparna ◽  
T Anuradha

Abstract From the moment of identifying the fundamental cause of an illness to its availability in the marketplace, it takes an average of 10 years and almost $2.6 billion dollars to develop a medication. We’re actually hunting for a needle in a haystack, which takes a lot of time, effort, and money. In a solution space of between 1030 and 10100 synthetically viable compounds, we’re seeking for the one molecule that can turn off a disease at the molecular level. The chemical solution space is just too large to adequately screen for the desired molecule. Only a small percentage of the synthetically viable compounds for wet lab research are stored in pharmaceutical chemical repositories. Computational de novo drug design can be used to explore this vast chemical space and develop previously undesigned compounds. Computational drug design can cut the amount of time spent in the discovery phase in half, resulting in a shorter time to market and lower drug prices. Deep learning and artificial intelligence (AI) have opened up new perspectives in cheminformatics, especially in molecules generative models. Recurrent neural networks (RNNs) trained with molecules in the SMILES text format, in particular, are very good at exploring the chemical space. Two baseline models were created for generating molecules, one of the model includes an encoder that takes SMILES as input and then develops a deep generative LSTM model which acts as a hidden layer and the output from layers acts as an input to the decoder. The other baseline model acts the same as the above-mentioned model but it includes latent space, it is simply a representation of compressed data that bring related data points closer together physically. To learn data properties and find simpler data representations for analysis, and weights which are obtained from the previous model to generate more efficient molecules. Then created a custom function to play with the temperature of the softmax activation function which creates a threshold value for the valid molecules to generate. This model enables us to produce new molecules through successful exploration.


Sign in / Sign up

Export Citation Format

Share Document