interaction point
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 47)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ki Hyun Nam

AbstractSerial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.


2022 ◽  
Vol 137 (1) ◽  
Author(s):  
Mogens Dam

AbstractFor cross section measurements, an accurate knowledge of the integrated luminosity is required. The FCC-ee physics programme at and around the Z pole sets the ambitious precision goal of $$10^{-4}$$ 10 - 4 on the absolute luminosity measurement and one order of magnitude better on the relative measurement between energy scan points. The luminosity is determined from the rate of Bhabha scattering, $$\mathrm {e^+e^- \rightarrow e^+e^-}$$ e + e - → e + e - , where the final state electrons and positrons are detected in dedicated monitors covering small angles from the outgoing beam directions. The constraints on the luminosity monitors are multiple: (i) they are placed inside the main detector volume only about 1 m from the interaction point; (ii) they are centred around the outgoing beam directions and do not satisfy the normal axial detector symmetry; (iii) their coverage is limited by the beam pipe, on the one hand, and by the requirement to stay clear of the main detector acceptance, on the other; (iv) the steep angular dependence of the Bhabha scattering process imposes a precision on the acceptance limits at about 1 $$\upmu $$ μ rad, corresponding to an absolute geometrical precision of $${\mathcal {O}}(1\,\upmu \text {m})$$ O ( 1 μ m ) on the monitor radial dimensions; and v) the very high bunch-crossing rate of 50 MHz during the Z-pole operation calls for fast readout electronics. Inspired by second-generation LEP luminosity monitors, which achieved an experimental precision of $$3.4 \times 10^{-4}$$ 3.4 × 10 - 4 on the absolute luminosity measurement (Abbiendi et al. in Eur Phys J C 14:373–425, 2000), a proposed ultra-compact solution is based on a sandwich of tungsten-silicon layers. A vigorous R&D programme is needed in order to ensure that such a solution satisfies the more challenging FCC-ee requirements.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Angeles Faus-Golfe ◽  
Marco Alan Valdivia Garcia ◽  
Frank Zimmermann

AbstractThe FCC-ee could measure the electron Yukawa coupling in a dedicated run at $$\sim $$ ∼ 125 GeV collision energy, provided that the center-of-mass (CM) energy spread can be reduced by means of monochromatization, e.g., through introducing nonzero horizontal dispersion of opposite sign at the interaction point (IP), for the two colliding beams. If the IP dispersion is nonzero, beamstrahlung blows up the horizontal emittance, and self-consistent IP parameters need to be determined. Two configurations are being studied. The first uses crab cavities to establish effective head-on collisions. The second configuration maintains the standard FCC-ee crossing angle, which, together with the IP dispersion, introduces a correlation between the local collision energy and the longitudinal location inside the detector, thereby allowing for an integrated scan of the Higgs resonance curve. We compare both approaches.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jinmian Li ◽  
Junle Pei ◽  
Long jie Ran ◽  
Wenxing Zhang

Abstract We study FASER and FASER 2 sensitivities to the quirk signal by simulating the motions of quirks that are travelling through several infrastructures from the ATLAS interaction point to the FASER (2) detector. The ionization energy losses for a charged quirk travelling in different materials are treated carefully. We calculate the expected numbers of quirk events that can reach the FASER (2) detector for an integrated luminosity of 150 (3000) fb−1. Scenarios for quirks with four different quantum numbers, and different masses and confinement scales are studied.


2021 ◽  
Vol 16 (12) ◽  
pp. P12028
Author(s):  
H. Abreu ◽  
E. Amin Mansour ◽  
C. Antel ◽  
A. Ariga ◽  
T. Ariga ◽  
...  

Abstract The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500–1000 Hz of other particles originating from the ATLAS interaction point. A very high efficiency trigger and data acquisition system is required to ensure that the physics events of interest will be recorded. This paper describes the trigger and data acquisition system of the FASER experiment and presents performance results of the system acquired during initial commissioning.


2021 ◽  
Vol 16 (12) ◽  
pp. C12033
Author(s):  
R. Koppenhöfer ◽  
T. Barvich ◽  
J. Braach ◽  
A. Dierlamm ◽  
U. Husemann ◽  
...  

Abstract The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Tracker will be equipped with silicon pixel detectors in the inner layers closest to the interaction point and silicon strip detectors in the outer layers. The new CMS Outer Tracker will consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers, it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8 T at the full bunch-crossing rate of 40 MHz directly on the module. This information will be used as an input for the first trigger stage of CMS. It is necessary to validate the Outer Tracker module functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of the runtime of the CMS experiment.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yong Lv ◽  
Hairong Zhu

Aiming at the problems of inaccurate interaction point position, interaction point drift, and interaction feedback delay in the process of LiDAR sensor signal processing interactive system, a target tracking algorithm is proposed by combining LiDAR depth image information with color images. The algorithm first fuses the gesture detection results of the LiDAR and the visual image and uses the color information fusion algorithm of the Camshift algorithm to realize the tracking of the moving target. The experimental results show that the multi-information fusion tracking algorithm based on this paper has achieved higher recognition rate and better stability and robustness than the traditional fusion tracking algorithm.


2021 ◽  
Author(s):  
Tuğba Alp Tokat ◽  
Burçin Türkmenoğlu ◽  
Yahya Güzel

Abstract According to the descriptors in the pharmacophore model, dividing molecules into training and test sets serves to create a good model. It is difficult to track the Local Reactive Descriptor (LRD) effect of the pharmacophore at each interaction point in the 3D metric system. A subset of clusters of atoms can correspond to all or part of the pharmacophore structure. In this study, the multidimensional system of the subset was reduced to a one-dimensional index and the Vector Fingerprint Functions (VFF) of the molecules were created. Models were established by dividing molecules with close and similar VFFs into training and test sets. Sub-clusters were examined for all molecules by applying the Genetic Algorithm (GA). The model was predicted using the Leave One Out-Cross Validation (LOO-CV) method and verified with an external test set. The statistical results of the model obtained according to the division in the new method we developed (Q2 = 0.604 and R2 = 0.760 for training-80 and external test-20 sets, respectively) were compared with random and manual division results.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Yu. N. Filatov ◽  
A. M. Kondratenko ◽  
M. A. Kondratenko ◽  
Ya. S. Derbenev ◽  
V. S. Morozov ◽  
...  

AbstractHadron polarization control schemes for Spin Transparent (ST) synchrotrons are analyzed. The spin dynamics and beam polarization in such synchrotrons are controlled by spin navigators (SN) which are special small insertions of weak magnetic fields. An SN stabilizes the beam polarization and allows for setting any desirable spin orientation at an interaction point in the operational regime, including a frequent spin flip. We present a general approach to design of SNs. We distinguish different types of SNs, namely, those not causing closed orbit perturbation as well as those producing local and global orbit distortions. In the second case, the concept of the spin response function in an ST synchrotron is applied and expanded to reveal the effect of the SN strength enhancement by magnetic lattice of the synchrotron. We provide conceptual schemes for SN designs using longitudinal and transverse magnetic fields allowing for polarization control at low as well as high energies. We also develop the ST concept for ultra-high energies. This development may enable and stimulate interest in polarized beam experiments in possible polarized collider projects such as Large Hadron Collider (LHC), Future Circular Collider (FCC) and Super Proton Proton Collider (SPPC).


Author(s):  
Mark D. Driver ◽  
Mark J. Williamson ◽  
Nicola De Mitri ◽  
Teodor Nikolov ◽  
Christopher A. Hunter

Sign in / Sign up

Export Citation Format

Share Document