scholarly journals Miniaturized Analysis of Amylopectin Chain Length Distribution by Fluorescence-Assisted Capillary Electrophoresis (FACE) down to Single Starch Granules

Author(s):  
amandine pruvost ◽  
stanislas helle ◽  
nicolas szydlowski ◽  
Christian ROLANDO

In the present work, we developed a miniaturized method for determining amylopectin chain length distribution (CLD) by fluorescence-assisted capillary electrophoresis (FACE). The method relies on single granule entrapping into capillaries followed by direct starch gelatinization and amylopectin debranching on carbograph-based solid phase extraction (SPE) cartridges. Sample desalting on HypersepTM tips following APTS-labelling and the use of nanovials allowed for the fluorescence analysis of weakly diluted samples. Consequently, method sensitivity was improved by 500-fold which is compatible with the analysis of single potato starch granules. The method was implemented to determine CLD profiles of single starch granules ranging from 50 to 100 µm in diameter. In these experiments, the relative proportion of starch glucans of up to 30 degrees of polymerization (DP) could be quantified.

2021 ◽  
Author(s):  
amandine pruvost ◽  
stanislas helle ◽  
nicolas szydlowski ◽  
Christian ROLANDO

In the present work, we developed a miniaturized method for determining amylopectin chain length distribution (CLD) by fluorescence-assisted capillary electrophoresis (FACE). The method relies on single granule entrapping into capillaries followed by direct starch gelatinization and amylopectin debranching on carbograph-based solid phase extraction (SPE) cartridges. Sample desalting on HypersepTM tips following APTS-labelling and the use of nanovials allowed for the fluorescence analysis of weakly diluted samples. Consequently, method sensitivity was improved by 500-fold which is compatible with the analysis of single potato starch granules. The method was implemented to determine CLD profiles of single starch granules ranging from 50 to 100 µm in diameter. In these experiments, the relative proportion of starch glucans of up to 30 degrees of polymerization (DP) could be quantified.


2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


2018 ◽  
Author(s):  
Wenzhi Zhou ◽  
Shanshan Zhao ◽  
Shutao He ◽  
Qiuxiang Ma ◽  
Xinlu Lu ◽  
...  

AbstractHigh amylose starch, a desired raw material in the starch industry, can be produced by plants deficient in the function of branching enzymes (BEs). Here we report the production of transgenic cassava plants with starches containing up to 50% amylose due to the constitutive expression of hair-pin dsRNAs targeting the BE1 or BE2 genes. A significant decrease in BE transcripts was confirmed in these transgenic plants by quantitative real-time RT-PCR. The absence of BE1 protein in the BE1-RNAi plant lines (BE1i) and a dramatically lower level of BE2 protein in the BE2-RNAi plant lines (BE2i) were further confirmed by Western blot assays. All transgenic plant lines were grown up in the field, but with reduced biomass production of the above-ground parts and storage roots compared to wild type (WT). Considerably high amylose content in the storage roots of BE2i plant lines was achieved, though not in BE1i plant lines. Storage starch granules of BE1i and BE2i plants had similar morphology as WT, however, the size of BE1i starch granules were bigger than that of WT. Comparisons of amylograms and thermograms of all three sources of storage starches revealed dramatic changes to the pasting properties and a higher melting temperature for BE2i starches. Glucan chain length distribution analysis showed a slight increase in chains of DP>36 in BE1i lines and a dramatic increase in glucan chains between DP 10-20 and DP>40 in BE2i lines, compared to that of WT starch. Furthermore, BE2i starches displayed a B-type X-ray diffraction pattern instead of the A-type pattern found in BE1i and WT starches. Therefore, cassava BE1 and BE2 function differently in storage root starch biosynthesis; silencing of cassava BE1 or BE2 caused various changes to starch physico-chemical properties and amylopectin structure. We also report that remarkably high amylose content in cassava starch has been first obtained in transgenic cassava by silencing of BE2 expression, thus showing a high potential for future industrial utilization.


1987 ◽  
Vol 39 (9) ◽  
pp. 295-298 ◽  
Author(s):  
H. Fuwa ◽  
D. V. Glover ◽  
K. Miyaura ◽  
N. Inouchi ◽  
Y. Konishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document