polar group
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 44)

H-INDEX

36
(FIVE YEARS 4)

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1304
Author(s):  
Alessio Ausili ◽  
Illya Yakymenko ◽  
José A. Teruel ◽  
Juan C. Gómez-Fernández

Clotrimazole (1-[(2-chlorophenyl)-diphenylmethyl]-imidazole) is an azole antifungal drug belonging to the imidazole subclass that is widely used in pharmacology and that can be incorporated in membranes. We studied its interaction with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid vesicles by using differential scanning calorimetry and found that the transition temperature decreases progressively as the concentration of clotrimazole increases. However, the temperature of completion of the transition remained constant despite the increase of clotrimazole concentration, suggesting the formation of fluid immiscibility. 1H-NMR and 1H NOESY MAS-NMR were employed to investigate the location of clotrimazole in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid membranes. In the presence of clotrimazole, all the resonances originating from POPC were shifted upfield, but mainly those corresponding to C2 and C3 of the fatty acyl, chains suggesting that clotrimazole aromatic rings preferentially locate near these carbons. In the same way, 2D-NOESY measurements showed that the highest cross-relaxation rates between protons of clotrimazole and POPC were with those bound to the C2 and C3 carbons of the fatty acyl chains. Molecular dynamics simulations indicated that clotrimazole is located near the top of the hydrocarbon-chain phase, with the nitrogen atoms of the imidazole ring of clotrimazole being closest to the polar group of the carbonyl moiety. These results are in close agreement with the NMR and the conclusion is that clotrimazole is located near the water–lipid interface and in the upper part of the hydrophobic bilayer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1250
Author(s):  
José Antonio Lebrón ◽  
Manuel López-López ◽  
Clara B. García-Calderón ◽  
Ivan V. Rosado ◽  
Fernando R. Balestra ◽  
...  

The formation of calixarene-based liposomes was investigated, and the characterization of these nanostructures was carried out using several techniques. Four amphiphilic calixarenes were used. The length of the hydrophobic chains attached to the lower rim as well as the nature of the polar group present in the upper rim of the calixarenes were varied. The lipid bilayer was formed with one calixarene and with the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, DOPE. The cytotoxicity of the liposomes for various cell lines was also studied. From the results obtained, the liposomes formed with the least cytotoxic calixarene, (TEAC12)4, were used as nanocarriers of both nucleic acids and the antineoplastic drug doxorubicin, DOX. Results showed that (TEAC12)4/DOPE/p-EGFP-C1 lipoplexes, of a given composition, can transfect the genetic material, although the transfection efficiency substantially increases in the presence of an additional amount of DOPE as coadjuvant. On the other hand, the (TEAC12)4/DOPE liposomes present a high doxorubicin encapsulation efficiency, and a slow controlled release, which could diminish the side effects of the drug.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4703
Author(s):  
Qiang Deng ◽  
Michal Slaný ◽  
Huani Zhang ◽  
Xuefan Gu ◽  
Yong-Fei Li ◽  
...  

In this paper, alkyl aliphatic hydrazine, which is different from traditional polymer fluidity improver, was synthesized from aliphatic hydrazine and cetane bromide, and evaluated as a pour point and viscosity-reducer depressant for crude oil. The evaluation results showed that alkyl aliphatic hydrazone fully reduced the pour point and viscosity of crude oil with the increase of crude oil fluidity. The viscosity reduction rate of crude oil in Jinghe oilfield was 79.6%, and the pour point was reduced by about 11.3 °C. The viscosity reduction rate of crude oil in Xinjiang Oilfield was 74.7%, and the pour point was reduced by 8.0 °C. The long alkyl chain is beneficial to the eutectic of wax in crude oil, and the polar group inhibits the crystal growth, resulting in the decrease of pour point and viscosity. The waste oil is fully recycled into oilfield chemicals.


2021 ◽  
Vol 118 (32) ◽  
pp. e2102813118
Author(s):  
Heng Liu ◽  
R. N. V. Krishna Deepak ◽  
Anna Shiriaeva ◽  
Cornelius Gati ◽  
Alexander Batyuk ◽  
...  

Prostaglandin D2 (PGD2) signals through the G protein–coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD2 derivative, 15R-methyl-PGD2 (15mPGD2), by serial femtosecond crystallography. The structure revealed a “polar group in”–binding mode of 15mPGD2 contrasting the “polar group out”–binding mode of PGE2 in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Satya Kumar Avula ◽  
Majid Khan ◽  
Sobia Ahsan Halim ◽  
Ajmal Khan ◽  
Samia Ahmed Al-Riyami ◽  
...  

A series of novel 1H-1,2,3-triazole analogs (9a–j) were synthesized via “Click” chemistry and Suzuki–Miyaura cross-coupling reaction in aqueous medium. The compounds were evaluated for their carbonic anhydrase-II enzyme inhibitory activity in vitro. The synthesis of triazole 7a was accomplished using (S)-(-) ethyl lactate as a starting material. This compound (7a) underwent Suzuki–Miyaura cross-coupling reaction with different arylboronic acids in aqueous medium to afford the target molecules, 9a–j in good yields. All newly synthesized compounds were characterized by 1H NMR, 13C NMR, FT-IR, HRMS, and where applicable 19F NMR spectroscopy (9b, 9e, 9h, and 9j). The new compounds have shown moderate inhibition potential against carbonic anhydrase-II enzyme. A preliminary structure-activity relationship suggested that the presence of polar group at the 1H-1,2,3-triazole substituted phenyl ring in these derivatives (9a–j) has contributed to the overall activity of these compounds. Furthermore, via molecular docking, it was deduced that the compounds exhibit inhibitory potential through direct binding with the active site residues of carbonic anhydrase-II enzyme. This study has unraveled a new series of triazole derivatives as good inhibitors against carbonic anhydrase-II.


2021 ◽  
Author(s):  
Yufeng Ma ◽  
Fei Song ◽  
Juan Yu ◽  
Nannan Wang ◽  
Puyou Jia ◽  
...  

Abstract The recent studies on sustainable plasticizer mainly focus on raw material source, synthesis method and plasticization, but the effect of chemical functional groups (epoxy group and ester group) of sustainable plasticizer on compatibility and thermal stability of plasticized polyvinyl chlorid (PVC) materials has been ignored. In this study, we synthesized two kinds of sustainable plasticizer, eleostearic acid eugenol ester(EAEE) and epoxidized EAEE. PVC films plasticized with EAEE were investigated and compared with epoxidized EAEE. PVC plasticized with epoxidized EAEE showed more flexible and thermal stability than EAEE. More hydrogen bonds were formed between PVC chains and epoxidized EAEE than that of PVC chains and EAEE, which caused the that epoxidized EAEE played more efficient plasticizing effect on PVC than EAEE. Epoxidized EAEE containing the flexible alkane chains and polar group (ester groups and epoxy groups) has stronger intermolecular interaction force than EAEE, causing homogeneous and smooth surface of plasticized PVC films.


Author(s):  
Yao Guo ◽  
Qin Zhao ◽  
Yingying Tian ◽  
Yuanyuan Liu ◽  
Ziyi Yan ◽  
...  

AbstractEPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylethanolamine (EPA-PE) are newly identified marine phospholipids. The polar group of phospholipids is known to influence EPA-phospholipid activity. However, the differences in anti-tumor effects between EPA-PC and EPA-PE have not been reported. In this study, we evaluated the effects of two forms of EPA on the proliferation and apoptosis in the lung-cancer cell line 95D as well as possible molecular mechanisms. Our results showed that EPA-PC effectively inhibited proliferative activity and promoted apoptosis of 95D cells in a dose-dependent manner, while EPA-PE had no effect on cell proliferation, although it slightly promoted apoptosis. Western blot results showed that EPA-PC and EPA-PE upregulated the expression of PPARγ, RXRα, and PTEN, and downregulated the PI3K/AKT signaling pathway. Furthermore, EPA-PC and EPA-PE induced the expression of the pro-apoptotic gene, Bax, and reduced the expression of the anti-apoptotic gene, Bcl-xl. Additionally, EPA-PC and EPA-PE promoted the release of cytochrome c and activated the apoptotic enzyme-cleaved caspase-3. These data suggest that the anti-tumor effect of EPA-phospholipids may be exerted via a PPARγ-related mechanism. EPA-PC was more efficacious as compared to EPA-PE, which might be due to the different polar groups of phospholipids.


Sign in / Sign up

Export Citation Format

Share Document