scholarly journals Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability

Author(s):  
Matthew Witman ◽  
Gustav Ek ◽  
Sanliang Ling ◽  
Jeffery Chames ◽  
Sapan Agarwal ◽  
...  

Solid-state hydrogen storage materials that are optimized for specific use cases could be a crucial facilitator of the hydrogen economy transition. Yet the discovery of novel hydriding materials has historically been a manual process driven by chemical intuition or experimental trial-and-error. Data-driven materials' discovery paradigms provide an alternative to traditional approaches, whereby machine/statistical learning (ML) models are used to efficiently screen materials for desired properties and significantly narrow the scope of expensive/time-consuming first-principles modeling and experimental validation. Here we specifically focus on a relatively new class of hydrogen storage materials, high entropy alloy (HEA) hydrides, whose vast combinatorial composition space and local structural disorder necessitates a data-driven approach that does not rely on exact crystal structures in order to make property predictions. Our ML model quickly screens hydride stability within a large HEA space and permits down selection for laboratory validation based not only on targeted thermodynamic properties, but also secondary criteria such as alloy phase stability and density. To experimentally verify our predictions, we performed targeted synthesis and characterization of several novel hydrides that demonstrate significant destabilization (70x increase in equilibrium pressure, 20 kJ/molH<sub>2</sub> decrease in desorption enthalpy) relative to the benchmark HEA hydride, TiVZrNbHfH<sub>x</sub>. Ultimately, by providing a large composition space in which hydride thermodynamics can be continuously tuned over a wide range, this work will enable efficient materials selection for various applications, especially in areas such as metal hydride based hydrogen compressors, actuators, and heat pumps.

2021 ◽  
Author(s):  
Matthew Witman ◽  
Gustav Ek ◽  
Sanliang Ling ◽  
Jeffery Chames ◽  
Sapan Agarwal ◽  
...  

Solid-state hydrogen storage materials that are optimized for specific use cases could be a crucial facilitator of the hydrogen economy transition. Yet the discovery of novel hydriding materials has historically been a manual process driven by chemical intuition or experimental trial-and-error. Data-driven materials' discovery paradigms provide an alternative to traditional approaches, whereby machine/statistical learning (ML) models are used to efficiently screen materials for desired properties and significantly narrow the scope of expensive/time-consuming first-principles modeling and experimental validation. Here we specifically focus on a relatively new class of hydrogen storage materials, high entropy alloy (HEA) hydrides, whose vast combinatorial composition space and local structural disorder necessitates a data-driven approach that does not rely on exact crystal structures in order to make property predictions. Our ML model quickly screens hydride stability within a large HEA space and permits down selection for laboratory validation based not only on targeted thermodynamic properties, but also secondary criteria such as alloy phase stability and density. To experimentally verify our predictions, we performed targeted synthesis and characterization of several novel hydrides that demonstrate significant destabilization (70x increase in equilibrium pressure, 20 kJ/molH<sub>2</sub> decrease in desorption enthalpy) relative to the benchmark HEA hydride, TiVZrNbHfH<sub>x</sub>. Ultimately, by providing a large composition space in which hydride thermodynamics can be continuously tuned over a wide range, this work will enable efficient materials selection for various applications, especially in areas such as metal hydride based hydrogen compressors, actuators, and heat pumps.


2003 ◽  
Vol 801 ◽  
Author(s):  
Tecle S. Rufael ◽  
Cabral M. Williams

ABSTRACTThe most common diagnostic tools in studying reversible solid-state hydrogen storage materials involve volumetric or gravimetric approaches. In this study, a mature gas solid analysis technique called Temperature Programmed Reaction (TPR) is presented as an alternative and complementary approach in investigating solid-state hydrogen storage materials. TPR is fast, simple and offers valuable information from a wide range of solid materials. This technique is routinely used to characterize the reduction behavior of metal oxide and sulfide catalysts. In a typical TPR experiment, a sample powder is heated at a constant rate under a non steady-state environment of constant pressure and flow of a hydrogen/inert gas mixture, while monitoring the rate of hydrogen absorption and desorption by a thermal conductivity detector. The principle behind TPR is the high thermal conductivity coefficient of hydrogen when compared to other gases. The detector is sensitive enough that a slight change in hydrogen concentration is reflected by significant changes in the thermal conductivity signal. Hydrogen storage materials exhibit fingerprint type TPR spectra, unique to their composition and structure. Specific rates of hydrogen intake, heats of absorption and desorption as well as extent of activation can be extracted from TPR curves. In addition, multiple absorption and desorption states can be identified from the number of absorption or desorption peaks. Material stability and potential structural or phase changes can also be inferred indirectly. The simplicity and the highly sensitive thermal conductivity measurement provide a number of advantages over the traditional volumetric or gravimetric methods. Metal hydride alloys of AB5-type are used to demonstrate the effectiveness of TPR technique in characterizing hydrogen storage materials.


2021 ◽  
Vol 858 ◽  
pp. 158357
Author(s):  
Kátia R. Cardoso ◽  
Virginie Roche ◽  
Alberto M. Jorge Jr ◽  
Flávio J. Antiqueira ◽  
Guilherme Zepon ◽  
...  

2016 ◽  
Vol 41 (41) ◽  
pp. 18301-18310 ◽  
Author(s):  
Lucas Faccioni Chanchetti ◽  
Sergio Manuel Oviedo Diaz ◽  
Douglas Henrique Milanez ◽  
Daniel Rodrigo Leiva ◽  
Leandro Innocentini Lopes de Faria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document