scholarly journals A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields

Author(s):  
Riccardo Capelli ◽  
Andrea Gardin ◽  
Charly Empereur-mot ◽  
Giovanni Doni ◽  
Giovanni M. Pavan

<div><div><div><p>Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain insights useful for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are non-trivial to catch. Here we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Positions (SOAP). We compare and classify a set of 13 force fields, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernels-based metrics allows us to compare, discriminate and correlate different force fields at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling non-average events (originating from local transitions), such as for example the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit vs. explicit solvent force fields.</p></div></div></div>

2021 ◽  
Author(s):  
Riccardo Capelli ◽  
Andrea Gardin ◽  
Charly Empereur-mot ◽  
Giovanni Doni ◽  
Giovanni M. Pavan

<div><div><div><p>Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain insights useful for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are non-trivial to catch. Here we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Positions (SOAP). We compare and classify a set of 13 force fields, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernels-based metrics allows us to compare, discriminate and correlate different force fields at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling non-average events (originating from local transitions), such as for example the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit vs. explicit solvent force fields.</p></div></div></div>


2021 ◽  
Author(s):  
Riccardo Capelli ◽  
Andrea Gardin ◽  
Charly Empereur-mot ◽  
Giovanni Doni ◽  
Giovanni M. Pavan

<div><div><div><p>Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain insights useful for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are non-trivial to catch. Here we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Positions (SOAP). We compare and classify a set of 13 force fields, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernels-based metrics allows us to compare, discriminate and correlate different force fields at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling non-average events (originating from local transitions), such as for example the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit vs. explicit solvent force fields.</p></div></div></div>


2021 ◽  
Author(s):  
Riccardo Capelli ◽  
Andrea Gardin ◽  
Charly Empereur-mot ◽  
Giovanni Doni ◽  
Giovanni M. Pavan

<div><div><div><p>Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain insights useful for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are non-trivial to catch. Here we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Positions (SOAP). We compare and classify a set of 13 force fields, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernels-based metrics allows us to compare, discriminate and correlate different force fields at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling non-average events (originating from local transitions), such as for example the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit vs. explicit solvent force fields.</p></div></div></div>


RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 655-661 ◽  
Author(s):  
Haiyang Yang ◽  
Zhiheng Huang ◽  
Yong Zhang

By employing coarse-grained molecular dynamics simulations, we obtained the temperature–pressure phase diagrams of a dipalmitoylphosphatidylcholine bilayer, which exhibits a gel phase and a fluid phase, with variation of the C60versus lipid ratios.


MRS Advances ◽  
2020 ◽  
Vol 5 (17) ◽  
pp. 899-906
Author(s):  
Alexandros Chremos ◽  
Ferenc Horkay

ABSTRACTWe investigate the structure of neutral and charged bottlebrush polymers in salt-free solutions at different polymer concentrations. In particular, we use molecular dynamics simulations by utilizing a coarse-grained bead-spring model that includes an explicit solvent and complementary experiments made by small angle neutron scattering (SANS). We find that the charged groups along the side chains exert significant repulsive forces, resulting in polymer swelling and backbone stretching. In addition to the primary polyelectrolyte peak, we find that bottlebrush polymers exhibit an additional peak in the form and static structure factors, a feature that is absent in neutral polymers. We show that this additional peak describes the intra-molecular correlations between the charged side chains.


RSC Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 3745-3755 ◽  
Author(s):  
Mohammed Lemaalem ◽  
Nourddine Hadrioui ◽  
Abdelali Derouiche ◽  
Hamid Ridouane

In this work, coarse-grained molecular dynamics simulations are carried out in NPTH and NVTE statistical ensembles in order to study the structure and dynamics properties of liposomes coated with polyethylene glycol (PEG).


Sign in / Sign up

Export Citation Format

Share Document