scholarly journals 6,5-Fused Ring, C2-Salvinorin Ester, Dual Kappa and Mu Opioid Receptor Agonists as Analgesics Devoid of Anxiogenic Effects

Author(s):  
Nicholas S. Akins ◽  
Nisha Mishra ◽  
Hannah M. Harris ◽  
Narendar Dudhipala ◽  
Seong Jong Kim ◽  
...  

Analgesia is commonly mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. Recently, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold <i>via</i> an ester linker. <i>In vitro</i> studies showed that some of these compounds have dual agonism on kappa and mu opioid receptors, while some have triple agonism on kappa, mu, and delta. <i>In vivo </i>studies on the lead dual kappa and mu opioid receptor agonist, compound <b>10</b>, showed that it<b> </b>produced analgesic activity while avoiding anxiogenic effects in murine models, thus providing further strong evidence for the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.

2021 ◽  
Author(s):  
Nicholas S. Akins ◽  
Nisha Mishra ◽  
Hannah M. Harris ◽  
Narendar Dudhipala ◽  
Seong Jong Kim ◽  
...  

Analgesia is commonly mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. Recently, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold <i>via</i> an ester linker. <i>In vitro</i> studies showed that some of these compounds have dual agonism on kappa and mu opioid receptors, while some have triple agonism on kappa, mu, and delta. <i>In vivo </i>studies on the lead dual kappa and mu opioid receptor agonist, compound <b>10</b>, showed that it<b> </b>produced analgesic activity while avoiding anxiogenic effects in murine models, thus providing further strong evidence for the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


Life Sciences ◽  
2021 ◽  
Vol 278 ◽  
pp. 119541
Author(s):  
Aysegul Gorur ◽  
Miguel Patiño ◽  
Hideaki Takahashi ◽  
German Corrales ◽  
Curtis R. Pickering ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jeremy C. Cornelissen ◽  
Bruce E. Blough ◽  
Laura M. Bohn ◽  
S. Stevens Negus ◽  
Matthew L. Banks

1984 ◽  
Vol 64 (5) ◽  
pp. 13-15 ◽  
Author(s):  
Y. RUCKEBUSCH ◽  
TH. BARDON

Intravenous adrenaline induced reticular extracontractions and rumination within 26 sec in hay-fed, and 184 sec in cube-fed sheep. Regardless of diet, pretreatment with cerebroventricular infusion of kappa-opioid-receptor agonists enhanced this reflex. Control of rumination may involve multiple opioid-receptors, since inhibition of the reflex occurred after mu- and delta-opioid-agonists. Key words: Sheep, rumination, opioid-peptides


1997 ◽  
Vol 235 (3) ◽  
pp. 567-570 ◽  
Author(s):  
Hunter C. Champion ◽  
James E. Zadina ◽  
Abba J. Kastin ◽  
Laszlo Hackler ◽  
Lin-Jun Ge ◽  
...  

2020 ◽  
Author(s):  
Simone Creed ◽  
Anna Gutridge ◽  
Malaika Argade ◽  
Madeline Hennessy ◽  
J. Brent Friesen ◽  
...  

<p>The seeds of the akuamma tree (<i>Picralima nitida</i>) have been used as a traditional treatment for pain and fever. Previous studies have attributed these effects to a series of indole alkaloids found within the seed extracts; however, these pharmacological studies were significantly limited in scope. Herein, an isolation protocol employing pH-zone-refining countercurrent chromatography is developed to provide six of the akuamma alkaloids in high purity and quantities sufficient for more extensive biological evaluation. Five of these alkaloids, akuammine, pseudo-akuammigine, picraline, akuammicine, and akuammiline, were evaluated against a panel of >40 central nervous system receptors to identify that their primary targets are the opioid receptors. Detailed<i> in vitro </i>investigations revealed one alkaloid as a potent kappa opioid receptor agonist and three alkaloids with micromolar activity at the mu opioid receptor. The mu opioid receptor agonists were further evaluated for analgesic properties but demonstrated limited efficacy in assays of thermal nociception. These findings contradict previous reports of the antinociceptive properties of the akuamma alkaloids and the traditional use of akuamma seeds as analgesics. Nevertheless, their opioid preferring activity does suggest the akuamma alkaloids provide distinct scaffolds from which to develop novel opioids with unique pharmacologically properties and therapeutic utility. <b><br></b></p>


Sign in / Sign up

Export Citation Format

Share Document