kappa opioid
Recently Published Documents


TOTAL DOCUMENTS

1378
(FIVE YEARS 253)

H-INDEX

74
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Sophia Shevick ◽  
Stephan Freeman ◽  
Guanghu Tong ◽  
Robin Russo ◽  
Laura Bohn ◽  
...  

The fungal metabolite collybolide attracted attention as a non-nitrogenous, potent and biased agonist of the kappa-opioid receptor (KOR). Here we report a 10-step asymmetric synthesis of this complex sesquiterpene that enables facile access to either enantiomer. The synthesis relies on a diastereoselective α-benzoyloxylation to install the buried C6 benzoate and avoid irreversible translactonization of the congested, functionally dense core. Neither enantiomer, however, exhibited KOR agonism, indicating that collybolide has been mischaracterized as a KOR agonist and leaving open the basis for antipruritic effects in mice.


Author(s):  
Harold L. Haun ◽  
Christina L. Lebonville ◽  
Matthew G. Solomon ◽  
William C. Griffin ◽  
Marcelo F. Lopez ◽  
...  

2022 ◽  
Vol 417 ◽  
pp. 113595
Author(s):  
Joelle de Melo Turnes ◽  
Erika Ivanna Araya ◽  
Amanda Ribeiro Barroso ◽  
Darciane Favero Baggio ◽  
Laura de Oliveira Koren ◽  
...  

2021 ◽  
Author(s):  
Sophia Shevick ◽  
Stephan Freeman ◽  
Guanghu Tong ◽  
Robin Russo ◽  
Laura Bohn ◽  
...  

The fungal metabolite collybolide attracted attention as a non-nitrogenous, potent and biased agonist of the kappa-opioid receptor (KOR). Here we report a 10-step asymmetric synthesis of this complex sesquiterpene that enables facile access to either enantiomer. The synthesis relies on a diastereoselective α-benzoyloxylation to install the buried C6 benzoate and avoid irreversible translactonization of the congested, functionally dense core. Neither enantiomer, however, exhibited KOR agonism, raising the specter of a yet-unidentified contaminant responsible for the reported activity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sophia Khom ◽  
Jacques D. Nguyen ◽  
Sophia A. Vandewater ◽  
Yanabel Grant ◽  
Marisa Roberto ◽  
...  

Male rats escalate intravenous self-administration of entactogen psychostimulants, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxymethamphetamine (MDMA) under extended access conditions, as with typical psychostimulants. Here, we investigated whether female rats escalate self-administration of methylone, 3,4-methylenedioxypentedrone (pentylone), and MDMA and then studied consequences of MDMA and pentylone self-administration on GABAA receptor and kappa opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA), a brain area critically dysregulated by extended access self-administration of alcohol or cocaine. Adult female Wistar rats were trained to self-administer methylone, pentylone, MDMA (0.5 mg/kg/infusion), or saline-vehicle using a fixed-ratio 1 response contingency in 6-h sessions (long-access: LgA) followed by progressive ratio (PR) dose-response testing. The effects of pentylone-LgA, MDMA-LgA and saline on basal GABAergic transmission (miniature post-synaptic inhibitory currents, mIPSCs) and the modulatory role of KOR at CeA GABAergic synapses were determined in acute brain slices using whole-cell patch-clamp. Methylone-LgA and pentylone-LgA rats similarly escalated their drug intake (both obtained more infusions compared to MDMA-LgA rats), however, pentylone-LgA rats reached higher breakpoints in PR tests. At the cellular level, baseline CeA GABA transmission was markedly elevated in pentylone-LgA and MDMA-LgA rats compared to saline-vehicle. Specifically, pentylone-LgA was associated with increased CeA mIPSC frequency (GABA release) and amplitude (post-synaptic GABAA receptor function), while mIPSC amplitudes (but not frequency) was larger in MDMA-LgA rats compared to saline rats. In addition, pentylone-LgA and MDMA-LgA profoundly disrupted CeA KOR signaling such as both KOR agonism (1 mM U50488) and KOR antagonism (200 nM nor-binaltorphimine) decreased mIPSC frequency suggesting recruitment of non-canonical KOR signaling pathways. This study confirms escalated self-administration of entactogen psychostimulants under LgA conditions in female rats which is accompanied by increased CeA GABAergic inhibition and altered KOR signaling. Collectively, our study suggests that CeA GABA and KOR mechanisms play a critical role in entactogen self-administration like those observed with escalation of alcohol or cocaine self-administration.


Author(s):  
Rink-Jan Lohman ◽  
Karnaker Reddy Tupally ◽  
Ajit Kandale ◽  
Peter Cabot ◽  
Harendra Parekh

The kappa opioid receptor (KOPr) has exceptional potential as an analgesic target, seemingly devoid of the many peripheral side-effects of Mu receptors. Kappa-selective, small molecule pharmaceutical agents have been developed, but centrally mediated side effects have the limited their clinical translation. Here, we modify an active endogenous Dynorphin peptide with the aim of improving drug-likeness and developing safer KOPr agonists for clinical use. Using rational, iterative design and modern peptide chemistry, we developed a series of potent, selective and metabolically stable peptides from Dynorphin 1-7. Peptides were assessed for cAMP-modulation against Kappa, Mu and Delta opioid receptors, metabolic stability, KOPr specificity and binding, and interrogated for in vitro desensitisation and pERK signalling capability. Finally, lead peptides were evaluated for efficacy in Freund’s complete adjuvant rat model of inflammatory nociception. A library of 70 peptides was synthesised and assessed for pharmacological and metabolic stability factors. At least 10 peptide candidates showed low nanomolar activity (˂50 nM) in a cAMP assay, specificity for KORr, and plasma half-life >60 min, with 6 candidates also stable in trypsin. None of the selected peptides showed pERK activity, with a bias towards cAMP signalling. In vivo, KA305 and KA311 showed anti-nociception opioid receptor-specific activity comparable to morphine and U50 844. These highly potent and metabolically stable peptides are promising opioid analgesic leads for clinical translation. Since they are biased peptide KOPr agonists, it is plausible they lack many of the most significant side effects, such as tolerance, addiction, sedation and euphoria/dysphoria, common to opioid analgesics.


Author(s):  
Jacob K. Meariman ◽  
Jane C. Sutphen ◽  
Juan Gao ◽  
Daniel R. Kapusta

Nalfurafine is a G-protein–biased KOR (kappa opioid receptor) agonist that produces analgesia and lacks CNS adverse effects. Here, we examined the cardiovascular and renal responses to intravenous and oral nalfurafine alone and in combination with furosemide, hydrochlorothiazide, or amiloride. We hypothesized that nalfurafine, given its distinct mechanism of vasopressin inhibition, would increase urine output to these diuretics and limit electrolyte loss. Following catheterization, conscious Sprague-Dawley rats received an isotonic saline infusion and were then administered an intravenous bolus of nalfurafine, a diuretic, or a combination. Mean arterial pressure, heart rate, and urine output were recorded for 90 minutes. In another study, rats were placed in metabolic cages and administered drug in an oral volume load. Hourly urine samples were then collected for 5 hours. Intravenous and oral nalfurafine produced a marked diuresis, antinatriuresis, antikaliuresis, and a decrease in mean arterial pressure. Compared with diuretic treatment alone, intravenous coadministration with nalfurafine significantly increased urine output to furosemide and hydrochlorothiazide and decreased sodium and potassium excretion. Notably, mean arterial pressure was reduced with nalfurafine/diuretic combination therapy compared to diuretics alone. Similarly, oral coadministration of nalfurafine significantly increased urine output to hydrochlorothiazide and decreased sodium and potassium excretion, whereas combination with furosemide only limited the amount of sodium excreted. Further, both intravenous and oral coadministration of nalfurafine enhanced the diuresis to amiloride and decreased sodium excretion. Together, these findings demonstrate that nalfurafine enhances the diuresis to standard-of-care diuretics without causing an excessive loss of electrolytes, offering a new approach to treat several cardiovascular conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelly Smart ◽  
Ashley Yttredahl ◽  
Maria A. Oquendo ◽  
J. John Mann ◽  
Ansel T. Hillmer ◽  
...  

AbstractPreclinical studies have implicated kappa opioid receptors (KORs) in stress responses and depression-related behaviors, but evidence from human studies is limited. Here we present results of a secondary analysis of data acquired using positron emission tomography (PET) with the KOR radiotracer [11C]GR103545 in 10 unmedicated, currently depressed individuals with major depressive disorder (MDD; 32.6 ± 6.5 years, 5 women) and 13 healthy volunteers (34.8 ± 10 years, 6 women). Independent component analysis was performed to identify spatial patterns of coherent variance in KOR binding (tracer volume of distribution, VT) across all subjects. Expression of each component was compared between groups and relationships to symptoms were explored using the 17-item Hamilton Depression Rating Scale (HDRS). Three components of variation in KOR availability across ROIs were identified, spatially characterized by [11C]GR103545 VT in (1) bilateral frontal lobe; (2) occipital and parietal cortices, right hippocampus, and putamen; and (3) right anterior cingulate, right superior frontal gyrus and insula, coupled to negative loading in left middle cingulate. In MDD patients, component 3 was negatively associated with symptom severity on the HDRS (r = −0.85, p = 0.0021). There were no group-wise differences in expression of any component between patients and controls. These preliminary findings suggest that KOR signaling in cortical regions relevant to depression, particularly right anterior cingulate, could reflect MDD pathophysiology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kerly Niinep ◽  
Kaili Anier ◽  
Tony Eteläinen ◽  
Petteri Piepponen ◽  
Anti Kalda

Growing evidence suggests that epigenetic mechanisms, such as DNA methylation and demethylation, and histone modifications, are involved in the development of alcohol and drug addiction. However, studies of alcohol use disorder (AUD) that are focused on epigenetic DNA modifications and gene expression changes remain conflicting. Our aim was to study the effect of repeated ethanol consumption on epigenetic regulatory enzymes such as DNA methyltransferase and demethylase enzymes and whether those changes affected dynorphin/kappa-opioid receptor system in the Nucleus Accumbens (NAc). Two groups of male alcohol-preferring Alko Alcohol (AA) rats, rats which are selectively bred for high voluntary alcohol consumption and one group of male Wistar rats were used. The first group of AA rats had access to alcohol (10% ethanol solution) for 90 min on Mondays, Wednesdays and Fridays over a period of 3 weeks to establish a stable baseline of ethanol intake (AA-ethanol). The second group of AA rats (AA-water) and the Wistar rats (Wistar-water) were provided with water. Using qPCR, we found that voluntary alcohol drinking increased Dnmt1, −3a, and −3b mRNA levels and did not affect Tet family transcripts in the AA-ethanol group when compared with AA- and Wistar-water rats. DNMT and TET enzymatic activity measurements showed similar results to qPCR, where DNMT activity was increased in AA-ethanol group compared with AA-water and Wistar-water groups, with no statistically significant difference between groups in TET enzyme activity. In line with previous data, we found an increased percentage of global DNA methylation and hydroxymethylation in the AA-ethanol group compared with control rats. Finally, we investigated changes of selected candidate genes from dynorphin/kappa-opioid receptor system (Pdyn, Kor) and Dnmt3a genes that might be important in AUD-related behaviour. Our gene expression and promoter methylation analysis revealed a significant increase in the mRNA levels of Pdyn, Kor, and Dnmt3a in the AA-ethanol group, however, these changes can only be partially associate with the aberrant DNA methylation in promoter areas of the selected candidate genes. Thus, our findings suggest that the aberrant DNA methylation is rather one of the several mechanisms involved in gene expression regulation in AA rat model.


Sign in / Sign up

Export Citation Format

Share Document