scholarly journals Activation of CO2 at Chromia-Nanocluster-Modified Rutile and Anatase TiO2

2018 ◽  
Author(s):  
Michael Nolan ◽  
Marco Fronzi

Converting CO<sub>2</sub> to fuels is required to enable the production of sustainable fuels and to contribute to alleviating CO<sub>2</sub> emissions. In considering conversion of CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is crucial. In addressing this difficult problem, we have examined how nanoclusters of reducible metal oxides supported on TiO<sub>2</sub> can promote CO<sub>2</sub> activation. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructures composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with chromia nanoclusters. The heterostructures show non-bulk Cr and O sites in the nanoclusters and an upshifted valence band edge that is dominated by Cr 3d- O 2p interactions. We show that the supported chromia nanoclusters can adsorb and activate CO<sub>2 </sub>and that activation of CO<sub>2</sub> is promoted whether the TiO<sub>2</sub> support is oxidised or hydroxylated. Reduced heterostructures, formed by removal of oxygen from the chromia nanocluster, also promote CO<sub>2</sub> activation. In the strong CO<sub>2</sub> adsorption modes, the molecule bends giving O-C-O angles of 127 - 132<sup>o</sup> and elongation of C-O distances up to 1.30 Å; no carbonates are formed. The electronic properties show a strong CO<sub>2</sub>-Cr-O interaction that drives the interaction of CO<sub>2</sub> with the nanocluster and induces the structural distortions. These results highlight that a metal oxide support modified with reducible metal oxide nanoclusters can activate CO<sub>2</sub>, thus helping to overcome difficulties associated with the difficult first step in CO<sub>2</sub> conversion.

2018 ◽  
Author(s):  
Michael Nolan ◽  
Marco Fronzi

Converting CO<sub>2</sub> to fuels is required to enable the production of sustainable fuels and to contribute to alleviating CO<sub>2</sub> emissions. In considering conversion of CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is crucial. In addressing this difficult problem, we have examined how nanoclusters of reducible metal oxides supported on TiO<sub>2</sub> can promote CO<sub>2</sub> activation. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructures composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with chromia nanoclusters. The heterostructures show non-bulk Cr and O sites in the nanoclusters and an upshifted valence band edge that is dominated by Cr 3d- O 2p interactions. We show that the supported chromia nanoclusters can adsorb and activate CO<sub>2 </sub>and that activation of CO<sub>2</sub> is promoted whether the TiO<sub>2</sub> support is oxidised or hydroxylated. Reduced heterostructures, formed by removal of oxygen from the chromia nanocluster, also promote CO<sub>2</sub> activation. In the strong CO<sub>2</sub> adsorption modes, the molecule bends giving O-C-O angles of 127 - 132<sup>o</sup> and elongation of C-O distances up to 1.30 Å; no carbonates are formed. The electronic properties show a strong CO<sub>2</sub>-Cr-O interaction that drives the interaction of CO<sub>2</sub> with the nanocluster and induces the structural distortions. These results highlight that a metal oxide support modified with reducible metal oxide nanoclusters can activate CO<sub>2</sub>, thus helping to overcome difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


Author(s):  
Michael Nolan

The conversion of CO<sub>2</sub> to fuels is of significant importance in enabling the production of sustainable fuels, contributing to alleviating greenhouse gas emissions. While there are a number of key steps required to convert CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is critical. Well-known metal oxides such as oxidised TiO<sub>2</sub> or CeO<sub>2</sub> are unable to promote this step. In addressing this difficult problem, recent experimental work shows the potential for bismuth-containing materials to activate and convert CO<sub>2</sub>, but the origin of this activity is not yet clear. Additionally, nanostructures can show enhanced activity towards CO<sub>2</sub>. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructured materials composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with nanoclusters with Bi<sub>2</sub>O<sub>3</sub> stoichiometry. These heterostructures show low coordinated Bi sites in the nanoclusters and a valence band edge that is dominated by Bi-O states. These two factors mean that supported Bi<sub>2</sub>O<sub>3</sub> nanoclusters are able to adsorb and activate CO<sub>2</sub>. Computed adsorption energies lie in the range of -0.54 eV to -1.01 eV. In these strong adsorption modes, CO<sub>2</sub> is activated, in which the molecule bends giving O-C-O angles of 126 - 130<sup>o</sup> and elongation of C-O distances up to 1.28 Å, with no carbonate formation. The electronic properties show a strong CO<sub>2</sub>-Bi-oxygen interaction that drives the interaction of CO<sub>2</sub> to induce the structural distortions. Bi<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> heterostructures can be reduced to form Bi<sup>2+</sup> and Ti<sup>3+</sup> species. The interaction of CO<sub>2</sub> with this electron-rich, reduced system can produce CO directly, reoxidising the heterostructure or form an activated carboxyl species (CO<sub>2</sub><sup>-</sup>) through electron transfer from the heterostructure to CO<sub>2</sub>. These results highlight that a semiconducting metal oxide modified with suitable metal oxide nanoclusters can activate CO<sub>2</sub>, thus overcoming the difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


2018 ◽  
Author(s):  
Michael Nolan

The conversion of CO<sub>2</sub> to fuels is of significant importance in enabling the production of sustainable fuels, contributing to alleviating greenhouse gas emissions. While there are a number of key steps required to convert CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is critical. Well-known metal oxides such as oxidised TiO<sub>2</sub> or CeO<sub>2</sub> are unable to promote this step. In addressing this difficult problem, recent experimental work shows the potential for bismuth-containing materials to activate and convert CO<sub>2</sub>, but the origin of this activity is not yet clear. Additionally, nanostructures can show enhanced activity towards CO<sub>2</sub>. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructured materials composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with nanoclusters with Bi<sub>2</sub>O<sub>3</sub> stoichiometry. These heterostructures show low coordinated Bi sites in the nanoclusters and a valence band edge that is dominated by Bi-O states. These two factors mean that supported Bi<sub>2</sub>O<sub>3</sub> nanoclusters are able to adsorb and activate CO<sub>2</sub>. Computed adsorption energies lie in the range of -0.54 eV to -1.01 eV. In these strong adsorption modes, CO<sub>2</sub> is activated, in which the molecule bends giving O-C-O angles of 126 - 130<sup>o</sup> and elongation of C-O distances up to 1.28 Å, with no carbonate formation. The electronic properties show a strong CO<sub>2</sub>-Bi-oxygen interaction that drives the interaction of CO<sub>2</sub> to induce the structural distortions. Bi<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> heterostructures can be reduced to form Bi<sup>2+</sup> and Ti<sup>3+</sup> species. The interaction of CO<sub>2</sub> with this electron-rich, reduced system can produce CO directly, reoxidising the heterostructure or form an activated carboxyl species (CO<sub>2</sub><sup>-</sup>) through electron transfer from the heterostructure to CO<sub>2</sub>. These results highlight that a semiconducting metal oxide modified with suitable metal oxide nanoclusters can activate CO<sub>2</sub>, thus overcoming the difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


Computation ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 125
Author(s):  
Leila Kalantari ◽  
Fabien Tran ◽  
Peter Blaha

Experimental studies have shown the possible production of hydrogen through photocatalytic water splitting using metal oxide (MOy) nanoparticles attached to an anatase TiO2 surface. In this work, we performed density functional theory (DFT) calculations to provide a detailed description of the stability and geometry of MxOy clusters M = Cu, Ni, Co, Fe and Mn, x = 1–5, and y = 0–5 on the anatase TiO2(101) surface. It is found that unsaturated 2-fold-coordinated O-sites may serve as nucleation centers for the growth of metal clusters. The formation energy of Ni-containing clusters on the anatase surface is larger than for other M clusters. In addition, the Nin adsorption energy increases with cluster size n, which makes the formation of bigger Ni clusters plausible as confirmed by transition electron microscopy images. Another particularity for Ni-containing clusters is that the adsorption energy per atom gets larger when the O-content is reduced, while for other M atoms it remains almost constant or, as for Mn, even decreases. This trend is in line with experimental results. Also provided is a discussion of the oxidation states of M5Oy clusters based on their magnetic moments and Bader charges and their possible reduction with oxygen depletion.


Author(s):  
Xianggang Kong ◽  
You Yu ◽  
yanhong shen ◽  
Jiangfeng Song

An exhaustive analysis based on density functional theory (DFT) simulations of the effect of the Hf doping on the helium behavior has been performed in ZrCo. The He impurities have...


Author(s):  
Yoyo Hinuma ◽  
Shinya Mine ◽  
Takashi Toyao ◽  
Zen Maeno ◽  
Ken-ichi Shimizu

Metal/oxide support perimeter sites are known to provide unique properties because the nearby metal changes the local environment on the support surface. In particular, the electron scavenger effect reduces the...


2019 ◽  
Vol 20 ◽  
pp. 188-195 ◽  
Author(s):  
Feili Lai ◽  
Jianrui Feng ◽  
Tobias Heil ◽  
Gui-Chang Wang ◽  
Peter Adler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document