CO2 Activation on Heterostructures of Bi2O3-Nanocluster Modified TiO2: Promoting the Critical First Step in CO2 Conversion

Author(s):  
Michael Nolan

The conversion of CO<sub>2</sub> to fuels is of significant importance in enabling the production of sustainable fuels, contributing to alleviating greenhouse gas emissions. While there are a number of key steps required to convert CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is critical. Well-known metal oxides such as oxidised TiO<sub>2</sub> or CeO<sub>2</sub> are unable to promote this step. In addressing this difficult problem, recent experimental work shows the potential for bismuth-containing materials to activate and convert CO<sub>2</sub>, but the origin of this activity is not yet clear. Additionally, nanostructures can show enhanced activity towards CO<sub>2</sub>. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructured materials composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with nanoclusters with Bi<sub>2</sub>O<sub>3</sub> stoichiometry. These heterostructures show low coordinated Bi sites in the nanoclusters and a valence band edge that is dominated by Bi-O states. These two factors mean that supported Bi<sub>2</sub>O<sub>3</sub> nanoclusters are able to adsorb and activate CO<sub>2</sub>. Computed adsorption energies lie in the range of -0.54 eV to -1.01 eV. In these strong adsorption modes, CO<sub>2</sub> is activated, in which the molecule bends giving O-C-O angles of 126 - 130<sup>o</sup> and elongation of C-O distances up to 1.28 Å, with no carbonate formation. The electronic properties show a strong CO<sub>2</sub>-Bi-oxygen interaction that drives the interaction of CO<sub>2</sub> to induce the structural distortions. Bi<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> heterostructures can be reduced to form Bi<sup>2+</sup> and Ti<sup>3+</sup> species. The interaction of CO<sub>2</sub> with this electron-rich, reduced system can produce CO directly, reoxidising the heterostructure or form an activated carboxyl species (CO<sub>2</sub><sup>-</sup>) through electron transfer from the heterostructure to CO<sub>2</sub>. These results highlight that a semiconducting metal oxide modified with suitable metal oxide nanoclusters can activate CO<sub>2</sub>, thus overcoming the difficulties associated with the difficult first step in CO<sub>2</sub> conversion.

2018 ◽  
Author(s):  
Michael Nolan

The conversion of CO<sub>2</sub> to fuels is of significant importance in enabling the production of sustainable fuels, contributing to alleviating greenhouse gas emissions. While there are a number of key steps required to convert CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is critical. Well-known metal oxides such as oxidised TiO<sub>2</sub> or CeO<sub>2</sub> are unable to promote this step. In addressing this difficult problem, recent experimental work shows the potential for bismuth-containing materials to activate and convert CO<sub>2</sub>, but the origin of this activity is not yet clear. Additionally, nanostructures can show enhanced activity towards CO<sub>2</sub>. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructured materials composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with nanoclusters with Bi<sub>2</sub>O<sub>3</sub> stoichiometry. These heterostructures show low coordinated Bi sites in the nanoclusters and a valence band edge that is dominated by Bi-O states. These two factors mean that supported Bi<sub>2</sub>O<sub>3</sub> nanoclusters are able to adsorb and activate CO<sub>2</sub>. Computed adsorption energies lie in the range of -0.54 eV to -1.01 eV. In these strong adsorption modes, CO<sub>2</sub> is activated, in which the molecule bends giving O-C-O angles of 126 - 130<sup>o</sup> and elongation of C-O distances up to 1.28 Å, with no carbonate formation. The electronic properties show a strong CO<sub>2</sub>-Bi-oxygen interaction that drives the interaction of CO<sub>2</sub> to induce the structural distortions. Bi<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> heterostructures can be reduced to form Bi<sup>2+</sup> and Ti<sup>3+</sup> species. The interaction of CO<sub>2</sub> with this electron-rich, reduced system can produce CO directly, reoxidising the heterostructure or form an activated carboxyl species (CO<sub>2</sub><sup>-</sup>) through electron transfer from the heterostructure to CO<sub>2</sub>. These results highlight that a semiconducting metal oxide modified with suitable metal oxide nanoclusters can activate CO<sub>2</sub>, thus overcoming the difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


2018 ◽  
Author(s):  
Michael Nolan ◽  
Marco Fronzi

Converting CO<sub>2</sub> to fuels is required to enable the production of sustainable fuels and to contribute to alleviating CO<sub>2</sub> emissions. In considering conversion of CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is crucial. In addressing this difficult problem, we have examined how nanoclusters of reducible metal oxides supported on TiO<sub>2</sub> can promote CO<sub>2</sub> activation. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructures composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with chromia nanoclusters. The heterostructures show non-bulk Cr and O sites in the nanoclusters and an upshifted valence band edge that is dominated by Cr 3d- O 2p interactions. We show that the supported chromia nanoclusters can adsorb and activate CO<sub>2 </sub>and that activation of CO<sub>2</sub> is promoted whether the TiO<sub>2</sub> support is oxidised or hydroxylated. Reduced heterostructures, formed by removal of oxygen from the chromia nanocluster, also promote CO<sub>2</sub> activation. In the strong CO<sub>2</sub> adsorption modes, the molecule bends giving O-C-O angles of 127 - 132<sup>o</sup> and elongation of C-O distances up to 1.30 Å; no carbonates are formed. The electronic properties show a strong CO<sub>2</sub>-Cr-O interaction that drives the interaction of CO<sub>2</sub> with the nanocluster and induces the structural distortions. These results highlight that a metal oxide support modified with reducible metal oxide nanoclusters can activate CO<sub>2</sub>, thus helping to overcome difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


2018 ◽  
Author(s):  
Michael Nolan ◽  
Marco Fronzi

Converting CO<sub>2</sub> to fuels is required to enable the production of sustainable fuels and to contribute to alleviating CO<sub>2</sub> emissions. In considering conversion of CO<sub>2</sub>, the initial step of adsorption and activation by the catalyst is crucial. In addressing this difficult problem, we have examined how nanoclusters of reducible metal oxides supported on TiO<sub>2</sub> can promote CO<sub>2</sub> activation. In this paper we present density functional theory (DFT) simulations of CO<sub>2</sub> activation on heterostructures composed of extended rutile and anatase TiO<sub>2</sub> surfaces modified with chromia nanoclusters. The heterostructures show non-bulk Cr and O sites in the nanoclusters and an upshifted valence band edge that is dominated by Cr 3d- O 2p interactions. We show that the supported chromia nanoclusters can adsorb and activate CO<sub>2 </sub>and that activation of CO<sub>2</sub> is promoted whether the TiO<sub>2</sub> support is oxidised or hydroxylated. Reduced heterostructures, formed by removal of oxygen from the chromia nanocluster, also promote CO<sub>2</sub> activation. In the strong CO<sub>2</sub> adsorption modes, the molecule bends giving O-C-O angles of 127 - 132<sup>o</sup> and elongation of C-O distances up to 1.30 Å; no carbonates are formed. The electronic properties show a strong CO<sub>2</sub>-Cr-O interaction that drives the interaction of CO<sub>2</sub> with the nanocluster and induces the structural distortions. These results highlight that a metal oxide support modified with reducible metal oxide nanoclusters can activate CO<sub>2</sub>, thus helping to overcome difficulties associated with the difficult first step in CO<sub>2</sub> conversion.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


CERNE ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Hamid Reza Taghiyari ◽  
Roya Majidi ◽  
Asghar Jahangiri

ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1436
Author(s):  
Mieczysław Mąkosza ◽  
Michał Fedoryński

After short historical introduction, interfacial mechanism of phase transfer catalyzed (PTC) reactions of organic anions, induced by aqueous NaOH or KOH in two-phase systems is formulated. Subsequently experimental evidence that supports the interfacial deprotonation as the key initial step of these reactions is presented.


2020 ◽  
Vol 6 (12) ◽  
pp. eaax1085 ◽  
Author(s):  
T. Moorsom ◽  
M. Rogers ◽  
I. Scivetti ◽  
S. Bandaru ◽  
G. Teobaldi ◽  
...  

We show that hybrid MnOx/C60 heterojunctions can be used to design a storage device for spin-polarized charge: a spin capacitor. Hybridization at the carbon-metal oxide interface leads to spin-polarized charge trapping after an applied voltage or photocurrent. Strong electronic structure changes, including a 1-eV energy shift and spin polarization in the C60 lowest unoccupied molecular orbital, are then revealed by x-ray absorption spectroscopy, in agreement with density functional theory simulations. Muon spin spectroscopy measurements give further independent evidence of local spin ordering and magnetic moments optically/electronically stored at the heterojunctions. These spin-polarized states dissipate when shorting the electrodes. The spin storage decay time is controlled by magnetic ordering at the interface, leading to coherence times of seconds to hours even at room temperature.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Min Park ◽  
Hyoung-Do Kim ◽  
Hongrae Joh ◽  
Seong Cheol Jang ◽  
Kyung Park ◽  
...  

AbstractA self-organized n+/n homojunction is proposed to achieve ultrahigh performance of thin film transistors (TFTs) based on an amorphous (Zn,Ba)SnO3 (ZBTO) semiconductor with sufficiently limited scattering centers. A deposited Al layer can induce a highly O-deficient (n+) interface layer in the back channel of a-ZBTO without damaging the front channel layer via the formation of a metal-oxide interlayer between the metal and back channel. The n+ layer can significantly improve the field-effect mobility by providing a relatively high concentration of free electrons in the front n-channel ZBTO, where the scattering of carriers is already controlled. In comparison with a Ti layer, the Al metal layer is superior, as confirmed by first-principles density functional theory (DFT) calculations, due to the stronger metal-O bonds, which make it easier to form a metal oxide AlOx interlayer through the removal of oxygen from ZBTO. The field-effect mobility of a-ZBTO with an Al capping layer can reach 153.4 cm2/Vs, which is higher than that of the pristine device, i.e., 20.8 cm2/Vs. This result paves the way for the realization of a cost-effective method for implementing indium-free ZBTO devices in various applications, such as flat panel displays and large-area electronic circuits.


Crystals ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 145 ◽  
Author(s):  
Nacole King ◽  
Jonathan Boltersdorf ◽  
Paul Maggard ◽  
Winnie Wong-Ng

Sign in / Sign up

Export Citation Format

Share Document