transition electron microscopy
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 20)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Hussain Shatteb ◽  
Mustafa Saffar ◽  
Amr AbdelFattah

Abstract Nanoencapsulation and targeted chemical delivery techniques have transformed many fields such as pharmaceutical drug delivery for medical treatment and diagnosis, and can similarly transform several upstream oil and gas operations. This paper describes the dual nanoencapsulation of superparamagnetic iron oxide nanoparticles (SPOINs) and petroleum sulfonate surfactants to produce hybrid nanosurfactant (MLHNS) in high-salinity water (56,000 ppm) using an inexpensive, scalable, and straightforward synthesis protocol. This novel magnetically labelled nanofluid (NF) is designed to: 1) enhance the residual oil mobilization via altering the rocks wettability and reducing the interfacial tension, and 2) enable in-situ monitoring of injected fluids when combined with EM surveys. NFs encapsulating a petroleum sulfonate surfactant and three different concentrations of 5-nm SPOINs were prepared using a two-step nanoencapsulation method. Both colloidal and chemical stability of the prepared formulations were tested at 90 °C for over a year. Results showed that all the formulations exhibited remarkable long-term colloidal and chemical stability under these close-to-reservoir conditions. Transition electron microscopy (TEM) images confirmed the encapsulation of SPIONs. The SPOINs-NFs have successfully reduced the interfacial tension (IFT) between crude oil and water by more than three orders of magnitude (from ~ 25 mN/m down to ~ 0.01 mN/m). These IFT and stability results demonstrate a strong synergy between SPIONs and the petroleum sulfonate surfactant. It is worth mentioning that this novel encapsulation platform enables the encapsulation of a wide range of nanoparticles (NPs) to generate a library of multi-function NFs to support several upstream applications.


Computation ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 125
Author(s):  
Leila Kalantari ◽  
Fabien Tran ◽  
Peter Blaha

Experimental studies have shown the possible production of hydrogen through photocatalytic water splitting using metal oxide (MOy) nanoparticles attached to an anatase TiO2 surface. In this work, we performed density functional theory (DFT) calculations to provide a detailed description of the stability and geometry of MxOy clusters M = Cu, Ni, Co, Fe and Mn, x = 1–5, and y = 0–5 on the anatase TiO2(101) surface. It is found that unsaturated 2-fold-coordinated O-sites may serve as nucleation centers for the growth of metal clusters. The formation energy of Ni-containing clusters on the anatase surface is larger than for other M clusters. In addition, the Nin adsorption energy increases with cluster size n, which makes the formation of bigger Ni clusters plausible as confirmed by transition electron microscopy images. Another particularity for Ni-containing clusters is that the adsorption energy per atom gets larger when the O-content is reduced, while for other M atoms it remains almost constant or, as for Mn, even decreases. This trend is in line with experimental results. Also provided is a discussion of the oxidation states of M5Oy clusters based on their magnetic moments and Bader charges and their possible reduction with oxygen depletion.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259052
Author(s):  
Masaru Yamanaka ◽  
Tsuyoshi Mashima ◽  
Michio Ogihara ◽  
Mei Okamoto ◽  
Takayuki Uchihashi ◽  
...  

Various proteins form nanostructures exhibiting unique functions, making them attractive as next-generation materials. Ferritin is a hollow spherical protein that incorporates iron ions. Here, we found that hydrogels are simply formed from concentrated apoferritin solutions by acid denaturation and subsequent neutralization. The water content of the hydrogel was approximately 80%. The apoferritin hydrogel did not decompose in the presence of 1 M HCl, 2-mercaptoethanol, or methanol but was dissolved in the presence of 1 M NaOH, by heating at 80°C, or by treatment with trypsin or 6 M guanidine hydrochloride. The Young’s modulus of the hydrogel was 20.4 ± 12.1 kPa according to local indentation experimentes using atomic force microscopy, indicating that the hydrogel was relatively stiff. Transition electron microscopy measurements revealed that a fibrous network was constructed in the hydrogel. The color of the hydrogel became yellow-brown upon incubation in the presence of Fe3+ ions, indicating that the hydrogel adsorbed the Fe3+ ions. The yellow-brown color of the Fe3+-adsorbed hydrogel did not change upon incubation in pure water, whereas it became pale by incubating it in the presence of 100 mM ethylenediaminetetraacetic acid (EDTA). The apoferritin hydrogel also adsorbed Co2+ and Cu2+ ions and released them in the presence of EDTA, while it adsorbed less Ni2+ ions; more Fe3+ ions adsorbed to the apoferritin hydrogel than other metal ions, indicating that the hydrogel keeps the iron storage characteristic of ferritin. These results demonstrate a new property of ferritin: the ability to form a hydrogel that can adsorb/desorb metal ions, which may be useful in designing future biomaterials.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012052
Author(s):  
Nannan Zhao ◽  
Chunyan Ban

Abstract The microstructures and hardness of 6063 Al alloy subjected to different ECAP route (Bc and the new route) were investigated. These two routes have different rotation scheme of a sample around its long axis between two consecutive ECAP passes: Bc route, by which sample were rotated in the same direction by 90°; the new route, by which sample were rotated in the same direction by 135°. The feature microstructures of the samples subjected to the two routes were investigated by the optical microscopy (OM) and transition electron microscopy (TEM), respectively. In comparison, the pressing by the new route produces more homogeneous microstructure with the higher fraction of high angle boundaries. Furthermore, the hardness results showed that work hardening can be observed and do not depend much on the ECAP route. However, distribution of hardness in cross-sections of samples revealed that processing to total passes number of eight by the new route improves deformation uniformity.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1151
Author(s):  
Alexey Pechenkin ◽  
Dmitry Potemkin ◽  
Maria Rubtsova ◽  
Pavel Snytnikov ◽  
Pavel Plyusnin ◽  
...  

Hydrogenation of CO2 relative to valuable chemical compounds such as methanol or dimethyl ether (DME) is an attractive route for reducing CO2 emissions in the atmosphere. In the present work, the hydrogenation of CO2 into DME over CuO-In2O3, supported on halloysite nanotubes (HNT) was investigated in the temperature range 200–300 °C at 40 atm. HNT appears to be novel promising support for bifunctional catalysts due to its thermal stability and the presence of acidic sites on its surface. CuO-In2O3/HNT catalysts demonstrate higher CO2 conversion and DME selectivity compared to non-indium CuO/HNT catalysts. The catalysts were investigated by N2 adsorption, X-ray diffraction, hydrogen-temperature programmed reduction and transition electron microscopy. The acid sites were analyzed by temperature programmed desorption of ammonia. It was shown that CuO/HNT was unstable under reaction conditions in contrast to CuO-In2O3/HNT. The best CuO-In2O3/HNT catalyst provided CO2 conversion of 7.6% with 65% DME selectivity under P = 40 atm, T = 250 °C, gas hour space velocity 12,000 h−1 and H2:CO2 = 3:1.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1663
Author(s):  
Noah U. Naef ◽  
Stefan Seeger

Chemical vapor phase deposition was used to create hydrophobic nanostructured surfaces on glass slides. Subsequently, hydrophilic channels were created by sputtering a metal catalyst on the channels while masking the outside. The surface tension gradient between the hydrophilic surface in the channels and the outside hydrophobicity formed the open-channel system. The reduction of para-nitrophenol (PNP) was studied on these devices. When compared to nanostructure-free reference systems, the created nanostructures, namely, silicone nanofilaments (SNFs) and nano-bagels, had superior catalytic performance (73% and 66% conversion to 55% at 0.5 µL/s flow rate using 20 nm platinum) and wall integrity; therefore, they could be readily used multiple times. The created nanostructures were stable under the reaction conditions, as observed with scanning electron microscopy. Transition electron microscopy studies of platinum-modified SNFs revealed that the catalyst is present as nanoparticles ranging up to 13 nm in size. By changing the target in the sputter coating unit, molybdenum, gold, nickel and copper were evaluated for their catalytic efficiency. The relative order was platinum < gold = molybdenum < nickel < copper. The decomposition of sodium borohydride (NaBH4) by platinum as a concurrent reaction to the para-nitrophenol reduction terminates the reaction before completion, despite a large excess of reducing agent. Gold had the same catalytic rate as molybdenum, while nickel was two times and copper about four times faster than gold. In all cases, there was a clear improvement in catalysis of silicone nanofilaments compared to a flat reference system.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 988
Author(s):  
Olga A. Bulavchenko ◽  
Tatyana N. Afonasenko ◽  
Alexey R. Osipov ◽  
Alena A. Pochtar’ ◽  
Andrey A. Saraev ◽  
...  

The Mn-Ce oxide catalysts active in the oxidation of CO were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), transition electron microscopy (TEM), energy dispersive X-Ray (EDX), and a differential dissolution technique. The Mn-Ce catalysts were prepared by thermal decomposition of oxalates by varying the Mn:Ce ratio. The nanocrystalline oxides with a fluorite structure and particle sizes of 4–6 nm were formed. The introduction of manganese led to a reduction of the oxide particle size, a decrease in the surface area, and the formation of a MnyCe1−yO2−δ solid solution. An increase in the manganese content resulted in the formation of manganese oxides such as Mn2O3, Mn3O4, and Mn5O8. The catalytic activity as a function of the manganese content had a volcano-like shape. The best catalytic performance was exhibited by the catalyst containing ca. 50 at.% Mn due to the high specific surface area, the formation of the solid solution, and the maximum content of the solid solution.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Woonbae Sohn ◽  
Ki Chang Kwon ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Kwang Chul Roh ◽  
...  

AbstractTwo-dimensional MoS2 film can grow on oxide substrates including Al2O3 and SiO2. However, it cannot grow usually on non-oxide substrates such as a bare Si wafer using chemical vapor deposition. To address this issue, we prepared as-synthesized and transferred MoS2 (AS-MoS2 and TR-MoS2) films on SiO2/Si substrates and studied the effect of the SiO2 layer on the atomic and electronic structure of the MoS2 films using spherical aberration-corrected scanning transition electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The interlayer distance between MoS2 layers film showed a change at the AS-MoS2/SiO2 interface, which is attributed to the formation of S–O chemical bonding at the interface, whereas the TR-MoS2/SiO2 interface showed only van der Waals interactions. Through STEM and EELS studies, we confirmed that there exists a bonding state in addition to the van der Waals force, which is the dominant interaction between MoS2 and SiO2. The formation of S–O bonding at the AS-MoS2/SiO2 interface layer suggests that the sulfur atoms at the termination layer in the MoS2 films are bonded to the oxygen atoms of the SiO2 layer during chemical vapor deposition. Our results indicate that the S–O bonding feature promotes the growth of MoS2 thin films on oxide growth templates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Milad Safar Sajadi ◽  
Sepideh Khoee

AbstractAggregation-induced quenching of porphyrin molecules as photosensitizer significantly reduces the quantum yield of the singlet oxygen generation, and it is able to decrease the efficacy of photodynamic therapy. We utilized amphiphilic copolymers in this work to precisely control porphyrin H-type and J-type aggregations in water. The amphiphilic copolymer bearing azobenzene, β-cyclodextrin, and porphyrin was successfully synthesized by the atom transfer radical polymerization technique. The azobenzene and β-cyclodextrin complex, as a host–guest supramolecular interaction, has great potential in the design of light-responsive nanocarriers. The amphiphilic block copolymer can be self-assembled into polymersomes, whose application in the generation of singlet oxygen has been also tested. We further demonstrate that, due to the stable H- and J-aggregates of porphyrin, which act as noncovalent cross-linking points, the structure of polymersomes can be reversible under light-stimulus. This formation method has the advantage of allowing for both the encapsulation of hydrophilic and hydrophobic molecules and release upon external light without any distinguishable changes in the structure. Furthermore, the morphology and particle size distribution of the polymersomes were also investigated by using transition electron microscopy, dynamic light scattering, and field emission scanning electron microscopy.


2021 ◽  
Author(s):  
Francesco Bizzotto ◽  
Jonathan Quinson ◽  
Johanna Schröder ◽  
Alessandro Zana ◽  
Matthias Arenz

Supported Ir oxide catalysts obtained from surfactant-free colloidal Ir nanoparticles (NPs) synthesized in alkaline methanol (MeOH), ethanol (EtOH), and ethylene glycol (EG) are investigated and compared. The comparison of independent techniques such as transition electron microscopy (TEM), small angle X-ray scattering (SAXS), and electrochemistry allows shedding light on the parameters that affect the dispersion of the active phase as well as the catalytic activity. The colloidal dispersions obtained are suitable to develop supported catalysts with little NP agglomeration on a carbon support leading to highly active catalysts with more than 400 A g<sup>-1</sup><sub>Ir</sub> reached at 1.5 V<sub>RHE</sub> for the OER. While the more common surfactant-free alkaline EG synthesis requires flocculation and re-dispersion leading to Ir loss, the main difference between methanol and ethanol as solvent is related to the dispersibility of the support material. The choice of the suitable monoalcohol determines the maximum achieved Ir loading on the support without detrimental particle agglomeration. This simple consideration on catalyst design can readily lead to significantly improved catalysts.


Sign in / Sign up

Export Citation Format

Share Document