scholarly journals Zero-Field Nuclear Magnetic Resonance of Chemically Exchanging Systems

Author(s):  
Danila Barskiy ◽  
Michael C. D. Tayler ◽  
Irene Marco-Rius ◽  
John Kurhanewicz ◽  
Daniel B. Vigneron ◽  
...  

Zero- and ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. Unlike conventional (high-field) NMR, which relies on chemical shifts for molecular identification, zero-field analog reports <i>J</i>-spectra that depend on the nuclear spin-spin coupling topology of molecules under investigation. While chemical shifts are usually a small fraction of the resonance frequencies, <i>J</i>-spectra for various spin systems are completely different from each other. In this work, we use zero-field NMR to study dynamic chemical processes and investigate the influence of chemical exchange on ZULF NMR spectra. We develop a computation approach that allows quantitative calculation of ZULF NMR spectra in the presence of chemical exchange and apply it to study aqueous solutions of [<sup>15</sup>N]ammonium as a model system. In this system, proton exchange rates span more than three orders of magnitude depending on acidity (pH), as monitored by high-field and ZULF NMR. We show that chemical exchange substantially affects the <i>J</i>-coupled NMR spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-<sup>13</sup>C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). The metabolism of pyruvate provides valuable biochemical information and its monitoring by zero-field NMR could give spectral resolution that is hard to achieve at high magnetic fields. We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization modalities to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement.<br>

2019 ◽  
Author(s):  
Danila Barskiy ◽  
Michael C. D. Tayler ◽  
Irene Marco-Rius ◽  
John Kurhanewicz ◽  
Daniel B. Vigneron ◽  
...  

Zero- and ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. Unlike conventional (high-field) NMR, which relies on chemical shifts for molecular identification, zero-field analog reports <i>J</i>-spectra that depend on the nuclear spin-spin coupling topology of molecules under investigation. While chemical shifts are usually a small fraction of the resonance frequencies, <i>J</i>-spectra for various spin systems are completely different from each other. In this work, we use zero-field NMR to study dynamic chemical processes and investigate the influence of chemical exchange on ZULF NMR spectra. We develop a computation approach that allows quantitative calculation of ZULF NMR spectra in the presence of chemical exchange and apply it to study aqueous solutions of [<sup>15</sup>N]ammonium as a model system. In this system, proton exchange rates span more than three orders of magnitude depending on acidity (pH), as monitored by high-field and ZULF NMR. We show that chemical exchange substantially affects the <i>J</i>-coupled NMR spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-<sup>13</sup>C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). The metabolism of pyruvate provides valuable biochemical information and its monitoring by zero-field NMR could give spectral resolution that is hard to achieve at high magnetic fields. We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization modalities to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement.<br>


2019 ◽  
Author(s):  
Danila Barskiy ◽  
Michael C. D. Tayler ◽  
Irene Marco-Rius ◽  
John Kurhanewicz ◽  
Daniel B. Vigneron ◽  
...  

Zero- and ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. Unlike conventional (high-field) NMR, which relies on chemical shifts for molecular identification, zero-field analog reports <i>J</i>-spectra that depend on the nuclear spin-spin coupling topology of molecules under investigation. While chemical shifts are usually a small fraction of the resonance frequencies, <i>J</i>-spectra for various spin systems are completely different from each other. In this work, we use zero-field NMR to study dynamic chemical processes and investigate the influence of chemical exchange on ZULF NMR spectra. We develop a computation approach that allows quantitative calculation of ZULF NMR spectra in the presence of chemical exchange and apply it to study aqueous solutions of [<sup>15</sup>N]ammonium as a model system. In this system, proton exchange rates span more than three orders of magnitude depending on acidity (pH), as monitored by high-field and ZULF NMR. We show that chemical exchange substantially affects the <i>J</i>-coupled NMR spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-<sup>13</sup>C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). The metabolism of pyruvate provides valuable biochemical information and its monitoring by zero-field NMR could give spectral resolution that is hard to achieve at high magnetic fields. We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization modalities to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement.<br>


1983 ◽  
Vol 61 (8) ◽  
pp. 1795-1799 ◽  
Author(s):  
Philip A. W. Dean

The previously reported 1:1 complexes formed in MeNO2, between M(SbF6)2 (M = Sn or Pb) and Ph2P(CH2)2PPh2, PhP[(CH2)2PPh2]2, MeC(CH2PPh2)3, P[(CH2)2PPh2]3, and [Formula: see text] have been studied by metal (119Sn or 207Pb) nmr. The metal chemical shifts span the comparatively narrow range of −586 to −792 ppm and 60 to −269 ppm, relative to the resonance of MMe4, for 119Sn and 207Pb nmr, respectively. The implications of these data regarding the denticity of the ligand in M(P[(CH2)2PPh2]3)2+ are discussed, and a comparison with the metal nmr spectra of related stannous and plumbous complexes is made.


2020 ◽  
Vol 100 (4) ◽  
pp. 60-74
Author(s):  
А.А. Bakibaev ◽  
◽  
М.Zh. Sadvakassova ◽  
V.S. Malkov ◽  
R.Sh. Еrkasov ◽  
...  

A wide variety of acyclic ureas comprising alkyl, arylalkyl, acyl, and aryl functional groups are investigated by nuclear magnetic resonance spectroscopy. In general, spectral characteristics of more than 130 substances based on acyclic ureas dissolved in deuterated dimethyl sulfoxide at room temperature are studied. The re-sults obtained based on the studies of 1H and 13C NMR spectra of urea and its N-alkyl-, N-arylalkyl-, N-aryl- and 1,3-diaryl derivatives are presented, and the effect of these functional groups on the chemical shifts in carbonyl and amide moieties in acyclic urea derivatives is discussed. An introduction of any type of substitu-ent (electron-withdrawing or electron-donating) into urea molecule is stated to result in a strong upfield shift in 13C NMR spectra relatively to unsubstituted urea. A strong sensitivity of NH protons to the presence of acyl and aryl groups in nuclear magnetic resonance spectra is pointed out. In some cases, qualitative depend-encies between the chemical shifts in the NMR spectra and the structure of the studied acyclic ureas are re-vealed. A summary of the results on chemical shifts in the NMR spectra of the investigated substances allows determining the ranges of chemical shift variations of the key protons and carbon atoms in acyclic ureas. The literature describing the synthesis procedures are provided. The results obtained significantly expand the methods of reliable identification of biologically active acyclic ureas and their metabolites that makes it promising to use NMR spectroscopy both in biochemistry and in clinical practice.


1979 ◽  
Vol 57 (23) ◽  
pp. 3168-3170 ◽  
Author(s):  
Henk Hiemstra ◽  
Hendrik A. Houwing ◽  
Okko Possel ◽  
Albert M. van Leusen

The 13C nmr spectra of oxazole and eight mono- and disubstituted derivatives have been analyzed with regard to the chemical shifts and the various carbon–proton coupling constants of the ring carbons. The data of the parent oxazole are compared with thiazole and 1-methylimidazole.


1988 ◽  
Vol 66 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Khoon-Sin Tan ◽  
Alan P. Arnold ◽  
Dallas L. Rabenstein

77Se and 1H nuclear magnetic resonance spectra have been measured for selenols (RSeH), diselenides (RSeSeR), and selenenyl sulfides (RSeSR′), including selenenyl sulfides formed by reaction of glutathione and penicillamine with selenocystine and related diselenides. Exchange processes strongly affect the 77Se and 1H nuclear magnetic resonance spectra of all three classes of compounds. Sharp, exchange-averaged resonances are observed in the 1H nuclear magnetic resonance spectra of selenols; however, selenol proton exchange causes the 77Se resonances to be extremely broad over the pH range where the selenol group is titrated. Selenol/diselenide exchange [Formula: see text] also results in exchange-averaged 1H resonances for solutions containing RSeH and RSeSeR; however, the 77Se resonances were too broad to detect. Exchange reactions have similar effects on nuclear magnetic resonance spectra of solutions containing selenols and selenenyl sulfides. The results indicate selenol/diselenide exchange is much faster than thiol/disulfide exchange. The 77Se chemical shift depends on the chemical state of the selenium, e.g., titration of the selenol group of selenocysteamine causes the 77Se resonance to be shielded by 164 ppm, oxidation of the selenol to form the diselenide selenocystamine causes a deshielding of 333 ppm, and oxidation to form the selenenyl sulfide [Formula: see text] results in a deshielding of 404 ppm. 77Se chemical shifts were found to be in the range −240 to −270 ppm (relative to (CH3)2Se) for selenolates, approximately −80 ppm for selenols, 230–360 ppm for diselenides, and 250–340 ppm for selenenyl sulfides. The 77Se chemical shift is also affected by titration of neighboring carboxylic acid and ammonium groups, and their pkA values can be calculated from 77Se chemical shift data.


1987 ◽  
Vol 41 (7) ◽  
pp. 1194-1199 ◽  
Author(s):  
David L. Ashley ◽  
Elizabeth R. Barnhart ◽  
Donald G. Patterson ◽  
Robert H. Hill

Nuclear magnetic resonance (NMR) techniques are used to determine the chlorination pattern on a number of chlorinated pyrenes and pyrene-addition products. Determining chemical shifts, couplings, and longitudinal relaxation rates makes the unequivocal assignment of these molecules possible. Chlorination under the conditions described here were found to follow the normal orientation rules for pyrene. Spectral parameters obtained from these molecules are consistent enough to allow further application to unknown compounds. This should simplify assigning NMR spectra to other chlorinated pyrene standards.


Sign in / Sign up

Export Citation Format

Share Document