scholarly journals Solving unbalanced intuitionistic fuzzy transportation problem

10.26524/cm61 ◽  
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Soundararajan S ◽  
Suresh Kumar M

In this paper, we find the optimal solution for an unbalanced intuitionistic fuzzy transportation problem by using monalisha’s approximation method. The main aim of this method is to avoid large number of iterations. To illustrate this method a numerical example Triangular intuitionistic fuzzy number, unbalanced intuitionistic fuzzy transportation problem, accuracy function.is given.

Author(s):  
P. Senthil Kumar

In this article, the author categorises the solid transportation problem (STP) under uncertain environments. He formulates the mixed and fully intuitionistic fuzzy solid transportation problems (FIFSTPs) and utilizes the triangular intuitionistic fuzzy number (TIFN) to deal with uncertainty and hesitation. The PSK (P. Senthil Kumar) method for finding an intuitionistic fuzzy optimal solution for fully intuitionistic fuzzy transportation problem (FIFTP) is extended to solve the mixed and type-4 IFSTP and the optimal objective value of mixed and type-4 IFSTP is obtained in terms of triangular intuitionistic fuzzy number (TIFN). The main advantage of this method is that the optimal solution of mixed and type-4 IFSTP is obtained without using the basic feasible solution and the method of testing optimality. Moreover, the proposed method is computationally very simple and easy to understand. Finally, the procedure for the proposed method is illustrated with the help of numerical examples which is followed by graphical representation of the finding.


2017 ◽  
Author(s):  
R. Jahir Hussain ◽  
P. Senthil Kumar

In this paper, we investigate transportation problem in which supplies and demands are intuitionistic fuzzy numbers. Intuitionistic fuzzy zero point method is proposed to find the optimal solution in terms of triangular intuitionistic fuzzy numbers. A new relevant numerical example is also included.


Author(s):  
P. Senthil Kumar

This article describes how in solving real-life solid transportation problems (STPs) we often face the state of uncertainty as well as hesitation due to various uncontrollable factors. To deal with uncertainty and hesitation, many authors have suggested the intuitionistic fuzzy (IF) representation for the data. In this article, the author tried to categorise the STP under uncertain environment. He formulates the intuitionistic fuzzy solid transportation problem (IFSTP) and utilizes the triangular intuitionistic fuzzy number (TIFN) to deal with uncertainty and hesitation. The STP has uncertainty and hesitation in supply, demand, capacity of different modes of transport celled conveyance and when it has crisp cost it is known as IFSTP of type-1. From this concept, the generalized mathematical model for type-1 IFSTP is explained. To find out the optimal solution to type-1 IFSTPs, a single stage method called intuitionistic fuzzy min-zero min-cost method is presented. A real-life numerical example is presented to clarify the idea of the proposed method. Moreover, results and discussions, advantages of the proposed method, and future works are presented. The main advantage of the proposed method is that the optimal solution of type-1 IFSTP is obtained without using the basic feasible solution and the method of testing optimality.


2018 ◽  
Vol 15 (01) ◽  
pp. 95-112 ◽  
Author(s):  
Abhishekh ◽  
A. K. Nishad

To the extent of our knowledge, there is no method in fuzzy environment to solving the fully LR-intuitionistic fuzzy transportation problems (LR-IFTPs) in which all the parameters are represented by LR-intuitionistic fuzzy numbers (LR-IFNs). In this paper, a novel ranking function is proposed to finding an optimal solution of fully LR-intuitionistic fuzzy transportation problem by using the distance minimizer of two LR-IFNs. It is shown that the proposed ranking method for LR-intuitionistic fuzzy numbers satisfies the general axioms of ranking functions. Further, we have applied ranking approach to solve an LR-intuitionistic fuzzy transportation problem in which all the parameters (supply, cost and demand) are transformed into LR-intuitionistic fuzzy numbers. The proposed method is illustrated with a numerical example to show the solution procedure and to demonstrate the efficiency of the proposed method by comparison with some existing ranking methods available in the literature.


2016 ◽  
Vol 15 (6) ◽  
pp. 6824-6832
Author(s):  
Nidhi Joshi ◽  
Surjeet Singh Chauhan

The present paper attempts to study the unbalanced fuzzy transportation problem so as to minimize the transportationcost of products when supply, demand and cost of the products are represented by fuzzy numbers. In this paper, authorsuse Roubast ranking technique to transform trapezoidal fuzzy numbers to crisp numbers and propose a new algorithm tofind the fuzzy optimal solution of unbalanced fuzzy transportation problem. The proposed algorithm is more efficient thanother existing algorithms like simple VAM and is illustrated via numerical example. Also, a comparison between the resultsof the new algorithm and the result of algorithm using simple VAM is provided.


Sign in / Sign up

Export Citation Format

Share Document