Transcranial Doppler studies in severe closed head injury patients and their relevance to outcome

2021 ◽  
Vol 18 (1) ◽  
pp. 06-12
Author(s):  
Haroon Salaria ◽  
1998 ◽  
Vol 88 (6) ◽  
pp. 996-1001 ◽  
Author(s):  
Aram Ter Minassian ◽  
Eliane Melon ◽  
Caroline Leguerinel ◽  
Carlo Alberto Lodi ◽  
Françis Bonnet ◽  
...  

Object. The aim of this study was to reassess whether middle cerebral artery blood flow velocity (MCAv) variations measured by transcranial Doppler ultrasonography during acute PaCO2 manipulation adequately reflect cerebral blood flow (CBF) changes in patients with severe closed head injury. Methods. The study was performed by comparing MCAv variations to changes in CBF as assessed by measurements of the difference in the arteriovenous content in oxygen (AVDO2). The authors initiated 35 CO2 challenges in 12 patients with severe closed head injury during the acute stage. By simultaneous recording of systemic and cerebral hemodynamic parameters, 105 AVDO2 measurements were obtained. Patients were stratified into two groups, “high” and “low,” with respect to whether their resting values of MCAv were greater than 100 cm/second during moderate hyperventilation. Four patients displayed an elevated MCAv, which was related to vasospasm in three cases and to hyperemia in one case. The PaCO2 and intracranial pressure levels were not different between the two groups. The slope of the regression line between 1 divided by the change in (Δ)AVDO2 and ΔMCAv was not different from identity in the low group (1/ΔAVDO2 = 1.08 × ΔMCAv − 0.07, r = 0.93, p < 0.001) and significantly differed (p < 0.05) from the slope of the high group (1/ΔAVDO2 = 1.46 × ΔMCAv − 0.4, r = 0.83, p < 0.001). Conclusions. In patients with severe closed head injury, MCAv variations adequately reflect CBF changes as assessed by AVDO2 measurements in the absence of a baseline increase in MCAv. These observations indicate that both moderate variations in PaCO2 and variations in cerebral perfusion pressure do not act noticeably on the diameter of the MCA. The divergence from the expected relationship in the high group seems to be due to the heterogeneity of CO2-induced changes in cerebrovascular resistance between differing arterial territories.


1993 ◽  
pp. 309-312 ◽  
Author(s):  
D. W. Newell ◽  
R. Aaslid ◽  
R. Stooss ◽  
H. J. Reulen

PEDIATRICS ◽  
2000 ◽  
Vol 106 (6) ◽  
pp. 1524-1525 ◽  
Author(s):  
C. M. A. LeBlanc; ◽  
J. B. Coombs ◽  
R. Davis

PEDIATRICS ◽  
2001 ◽  
Vol 107 (5) ◽  
pp. 1231-1231 ◽  
Author(s):  
A. J. Smally; ◽  
J. B. Coombs ◽  
R. Davis

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 500
Author(s):  
William Brad Hubbard ◽  
Meenakshi Banerjee ◽  
Hemendra Vekaria ◽  
Kanakanagavalli Shravani Prakhya ◽  
Smita Joshi ◽  
...  

Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood–brain barrier (BBB) dysfunction and blood–brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.


1993 ◽  
Vol 79 (3) ◽  
pp. 354-362 ◽  
Author(s):  
Donald W. Marion ◽  
Walter D. Obrist ◽  
Patricia M. Earlier ◽  
Louis E. Penrod ◽  
Joseph M. Darby

✓ Animal research suggests that moderate therapeutic hypothermia may improve outcome after a severe head injury, but its efficacy has not been established in humans. The authors randomly assigned 40 consecutively treated patients with a severe closed head injury (Glasgow Coma Scale score 3 to 7) to either a hypothermia or a normothermia group. Using cooling blankets and cold saline gastric lavage, patients in the hypothermia group were cooled to 32° to 33°C (brain temperature) within a mean of 10 hours after injury, maintained at that temperature for 24 hours, and rewarmed to 37° to 38°C over 12 hours. Patients in the normothermia group were maintained at 37° to 38°C during this time. Deep-brain temperatures were monitored directly and used for all temperature determinations. Intracranial pressure (ICP), cerebral blood flow (CBF), and cerebral metabolic rate for oxygen (CMRO2) were measured serially for all patients. Hypothermia significantly reduced ICP (40%) and CBF (26%) during the cooling period, and neither parameter showed a significant rebound increase after patients were rewarmed. Compared to the normothermia group, the mean CMRO2 in the hypothermia group was lower during cooling and higher 5 days after injury. Three months after injury, 12 of the 20 patients in the hypothermia group had moderate, mild, or no disabilities; eight of the 20 patients in the normothermia group had improved to the same degree. Both groups had a similar incidence of systemic complications, including cardiac arrhythmias, coagulopathies, and pulmonary complications. It is concluded that therapeutic moderate hypothermia is safe and has sustained favorable effects on acute derangements of cerebral physiology and metabolism caused by severe closed head injury. The trend toward better outcome with hypothermia may indicate that its beneficial physiological and metabolic effects limit secondary brain injury.


Sign in / Sign up

Export Citation Format

Share Document