secondary brain injury
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 163)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
pp. 298-304
Author(s):  
Alfiani Zukhruful Fitri Rifa’i ◽  
Rizqi Apsari Fairuz Kamila ◽  
Clara Alverina ◽  
Reny I’tishom

Traumatic brain injury (TBI) continues to be a major contributor to morbidity, disability, and mortality in all age groups. Initial brain damage is accompanied by acute and irreversible primary damage to the parenchyma, while subsequent secondary brain damage often progresses slowly over months to years, thus providing a window for therapeutic intervention. The most frequent case which happened is excessive oxidative stress and calcium release after brain injury. Although some traditional antioxidants have been clinically approved, the efficacy is far from satisfactory due to their low ROS-scavenging efficiency, instability, toxicity, or inadequate penetration of the blood-brain barrier. Moreover, the combination of Nanozyme based-bandage with Pt/CeO2 atom catalysis with electrospinning nanofibers N-type voltage-gated calcium channel blocker (SNX-185) is predicted to be as promising as a potential novel to reduce secondary injury of TBI. Therefore, the duo could cut down morbidity and mortality rates because of TBI in the future, noninvasively.


Author(s):  
Na Yuan ◽  
Xiuzhen Wang ◽  
Yu Zhang ◽  
Lingsi Kong ◽  
Liyong Yuan ◽  
...  

Background: The Postoperative cognitive dysfunction (POCD) model was constructed by resection of the left hepatic lobe in aged mice to determine the behavioral effects of the POCD model in aged mice and the relationship between NF-κB and POCD in apoptosis and autophagy. Provide a theoretical basis for POCD prevention and treatment. Methods: This study was carried out in Ningbo No. 6 Hospital, Zhejiang, China, from Jun 2019 to Dec 2020. The POCD model was constructed after resection of the left extrahepatic lobe in aged mice and randomly divided into 6 groups: sham operation group, operation group (normal saline control group, solvent group, YC-1 group, PDTC group and 3-MA group). Related indicators of behavioral changes, neuronal inflammatory responses, apoptosis, and autophagy were examined. Results: The escape latency of the aged mice in the surgical group was significantly prolonged at three time points compared with the control group, and the number of insertions decreased significantly. Microglia are activated and the inflammatory response is increased, whereas PDTC has an inhibitory effect. It was demonstrated that apoptosis and necrosis of neurons can be induced by the NF-κb pathway, and autophagy can be promoted, whereas autophagy occurs before apoptosis. Conclusion: Activation of NF-κb pathway in neurons after POCD causes neuronal apoptosis and autophagy, and cognitive impairment occurs. PDTC, a NF-κb pathway inhibitor, can effectively reduce neuronal apoptosis induced by secondary brain injury after POCD. Necrosis, to protect the brain tissue.  


2022 ◽  
Vol 12 ◽  
Author(s):  
Liren Zhang ◽  
Wensi Zheng ◽  
Feng Chen ◽  
Xiaolin Bai ◽  
Lixia Xue ◽  
...  

Background and Purpose: Non-convulsive status epilepticus (NCSE) is common in patients with disorders of consciousness and can cause secondary brain injury. Our study aimed to explore the determinants and prognostic significance of NCSE in stroke patients with impaired consciousness.Method: Consecutive ischemic stroke patients with impaired consciousness who were admitted to a neuro intensive care unit were enrolled for this study. Univariate and multivariable logistic regression were used to identify factors associated with NCSE and their correlation with prognosis.Results: Among the 80 patients studied, 20 (25%) died during hospitalization, and 51 (63.75%) had unfavorable outcomes at the 3-month follow-up. A total of 31 patients (38.75%) developed NCSE during 24-h electroencephalogram (EEG) monitoring. Logistic regression revealed that NCSE was significantly associated with an increased risk of death during hospital stay and adverse outcomes at the 3-month follow-up. Patients with stroke involving the cerebral cortex or those who had a severely depressed level of consciousness were more prone to epileptogenesis after stroke.Conclusion: Our results suggest that NCSE is a common complication of ischemic stroke, and is associated with both in-hospital mortality and dependency at the 3-month follow-up. Long-term video EEG monitoring of stroke patients is, therefore required, especially for those with severe consciousness disorders (stupor or coma) or cortical injury.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jie Li ◽  
Muyao Wu ◽  
Yating Gong ◽  
Jiafeng Tang ◽  
Jinchao Shen ◽  
...  

Leucine-rich repeat kinase 2 (LRRK2) is considered as a potential target for the treatment of Parkinson's disease. This protein is expressed in the brain and has been associated with various diseases and lysosomal maintenance. Rab10 is a member of the Rab protein GTPase family that has been recently shown to be a kinase substrate of LRRK2. In addition, LRRK2 and its kinase substrate Rab10 constitute a key stress response pathway during lysosomal overload stress. This study aimed to investigate the potential role and mechanism underlying LRRK2 and its kinase substrate Rab10 involving surgical brain injury (SBI). One hundred and forty-four male Sprague-Dawley rats were examined using an SBI model, and some had received the LRRK2-specific inhibitor PF-06447475. Thereafter, western blotting, immunofluorescence, brain water content analysis, neuronal apoptosis assay, and neurological score analysis were conducted. The results showed that after SBI, LRRK2 and phosphorylated Rab10 (p-Rab10) expression in neuronal cells were upregulated, and administration of PF-06447475 significantly reduced neuronal apoptosis, neuroinflammation, and brain water content 12 h after SBI and improved neurological deficit 72 h after SBI, which is related to the decreased expression of LRRK2 and p-Rab10, and the lessening of lysosomal overload stress. Our research suggests that the inhibition of LRRK2 can effectively interfere with the role of p-Rab10 in promoting the secretion of lysosomal hydrolase in lysosomal overload stress after SBI, thereby reducing neuronal apoptosis and inflammation after SBI and playing a major role in brain protection.


Anaesthesia ◽  
2022 ◽  
Vol 77 (S1) ◽  
pp. 43-48
Author(s):  
R. K. Kayambankadzanja ◽  
R. Samwel ◽  
T. Baker

2021 ◽  
Vol 34 (4) ◽  
pp. 270-278
Author(s):  
Jung-Ho Yun

Purpose: The purpose of the study is to analyze the results of surgical treatment of patients with brain and torso injury for 5 years in a single regional trauma center.Methods: We analyzed multiple trauma patients who underwent brain surgery and torso surgery for chest or abdominal injury simultaneously or sequentially among all 14,175 trauma patients who visited Dankook University Hospital Regional Trauma Center from January 2015 to December 2019.Results: A total of 25 patients underwent brain surgery and chest or abdominal surgery, with an average age of 55.4 years, 17 men and eight women. As a result of surgical treatment, there were 14 patients who underwent the surgery on the same day (resuscitative surgery), of which five patients underwent surgery simultaneously, four patients underwent brain surgery first, and one patient underwent chest surgery first, four patients underwent abdominal surgery first. Among the 25 treated patients, the 10 patients died, which the cause of death was five severe brain injuries and four hemorrhagic shocks.Conclusions: In multiple damaged patients require both torso surgery and head surgery, poor prognosis was associated with low initial Glasgow Coma Scale and high Injury Severity Score. On the other hand, patients had good prognosis when blood pressure was maintained and operation for traumatic brain injury was performed first. At the same time, patients who had operation on head and torso simultaneously had extremely low survival rates. This may be associated with secondary brain injury due to low perfusion pressure or continuous hypotension and the traumatic coagulopathy caused by massive bleeding.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Yan Zhang ◽  
Suliman Khan ◽  
Yang Liu ◽  
Rabeea Siddique ◽  
Ruiyi Zhang ◽  
...  

Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity; the mortality rate ranges from 40% at 1 month to 54% at 1 year; only 12%−39% achieve good outcomes and functional independence. ICH affects nearly 2 million patients worldwide annually. In ICH development, the blood leakage from ruptured vessels generates sequelae of secondary brain injury (SBI). This mechanism involves activated astrocytes and microglia, generation of reactive oxygen species (ROS), the release of reactive nitrogen species (RNS), and disrupted blood brain barrier (BBB). In addition, inflammatory cytokines and chemokines, heme compounds, and products of hematoma are accumulated in the extracellular spaces, thereby resulting in the death of brain cells. Recent evidence indicates that connexins regulate microglial activation and their phenotypic transformation. Moreover, communications between neurons and glia via gap junctions have crucial roles in neuroinflammation and cell death. A growing body of evidence suggests that, in addition to gap junctions, hemichannels (composed of connexins and pannexins) play a key role in ICH pathogenesis. However, the precise connection between connexin and pannexin channels and ICH remains to be resolved. This review discusses the pathological roles of gap junctions and hemichannels in SBI following ICH, with the intent of discovering effective therapeutic options of strategies to treat ICH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Yuan ◽  
Xiao-jie Lu ◽  
Qi Wu

Acute central nervous system (CNS) injuries, including stroke, traumatic brain injury (TBI), and spinal cord injury (SCI), are the common causes of death or lifelong disabilities. Research into the role of the gut microbiota in modulating CNS function has been rapidly increasing in the past few decades, particularly in animal models. Growing preclinical and clinical evidence suggests that gut microbiota is involved in the modulation of multiple cellular and molecular mechanisms fundamental to the progression of acute CNS injury-induced pathophysiological processes. The altered composition of gut microbiota after acute CNS injury damages the equilibrium of the bidirectional gut-brain axis, aggravating secondary brain injury, cognitive impairments, and motor dysfunctions, which leads to poor prognosis by triggering pro-inflammatory responses in both peripheral circulation and CNS. This review summarizes the studies concerning gut microbiota and acute CNS injuries. Experimental models identify a bidirectional communication between the gut and CNS in post-injury gut dysbiosis, intestinal lymphatic tissue-mediated neuroinflammation, and bacterial-metabolite-associated neurotransmission. Additionally, fecal microbiota transplantation, probiotics, and prebiotics manipulating the gut microbiota can be used as effective therapeutic agents to alleviate secondary brain injury and facilitate functional outcomes. The role of gut microbiota in acute CNS injury would be an exciting frontier in clinical and experimental medicine.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yiqing Shen ◽  
Wensong Yang ◽  
Xin Xiong ◽  
Xinhui Li ◽  
Zhongsong Xiao ◽  
...  

Existing treatments for intracerebral hemorrhage (ICH) are unable to satisfactorily prevent development of secondary brain injury after ICH and multiple pathological mechanisms are involved in the development of the injury. In this study, we aimed to identify novel genes and proteins and integrated their molecular alternations to reveal key network modules involved in ICH pathology. A total of 30 C57BL/6 male mice were used for this study. The collagenase model of ICH was employed, 3 days after ICH animals were tested neurological. After it, animals were euthanized and perihematomal brain tissues were collected for transcriptome and TMT labeling-based quantitative proteome analyses. Protein-protein interaction (PPI) network, Gene Set Enrichment Analysis (GSEA), and regularized Canonical Correlation Analysis (rCCA) were performed to integrated multiomics data. For validation of hub genes and proteins, qRT-PCR and Western blot were carried out. The candidate biomarkers were further measured by ELISA in the plasma of ICH patients and the controls. A total of 2218 differentially expressed genes (DEGs) and 353 differentially expressed proteins (DEPs) between the ICH model group and control group were identified. GSEA revealed that immune-related gene sets were prominently upregulated and significantly enriched in pathways of inflammasome complex, negative regulation of interleukin-12 production, and pyroptosis during the ICH process. The rCCA network presented two highly connective clusters which were involved in the sphingolipid catabolic process and inflammatory response. Among ten hub genes screened out by integrative analysis, significantly upregulated Itgb2, Serpina3n, and Ctss were validated in the ICH group by qRT-PCR and Western blot. Plasma levels of human SERPINA3 (homologue of murine Serpina3n) were elevated in ICH patients compared with the healthy controls (SERPINA3: 13.3 ng/mL vs. 11.2 ng/mL, p = 0.015 ). Within the ICH group, higher plasma SERPINA3 levels with a predictive threshold of 14.31 ng/mL ( sensitivity = 64.3 % ; specificity = 80.8 % ; AUC = 0.742 , 95% CI: 0.567-0.916) were highly associated with poor outcome (mRS scores 4-6). Taken together, the results of our study exhibited molecular changes related to ICH-induced brain injury by multidimensional analysis and effectively identified three biomarker candidates in a mouse ICH model, as well as pointed out that Serpina3n/SERPINA3 was a potential biomarker associated with poor functional outcome in ICH patients.


Sign in / Sign up

Export Citation Format

Share Document