THE EFFECTIVE CROSS FRAME GEOMETRY AND SPACING FOR ECONOMY IN CURVED STEEL-I-GIRDER BRIDGE

2019 ◽  
Vol 7 (4) ◽  
pp. 35
Author(s):  
TOPALAKATTI KIRANKUMAR ◽  
M. MURANAL SANTOSH ◽  
◽  
Keyword(s):  
2000 ◽  
Author(s):  
Bryant G. Nielson ◽  
Kevin C. Womack ◽  
Marvin W. Halling

Author(s):  
Daniel E. Domalik ◽  
Jason F. Shura ◽  
Daniel G. Linzell

Bridge 207 is a two-span horizontally curved steel plate girder bridge near Port Matilda, Pennsylvania. Although the curvature is not severe, the curvature combined with the unequal span balance caused an unusual distribution of force effects in the girders. A global twisting of the superstructure was caused by the unequal vertical deflections in the two spans. The computer program BSDI-3D was used to analyze the curved superstructure. To account for the out-of-plumb condition of the girders in their final condition, additional lateral flange bending moments were calculated. The magnitude of the additional lateral moments was a function of the vertical bending moments and the degree of twist in the girder. Field monitoring of the structure is focusing on the effects of curvature during construction. This is being accomplished by developing a detailed time line of superstructure erection and deck placement and through monitoring of the bridge by using vibrating wire strain gauges and tiltmeters positioned at critical locations on the girders and cross-frames. Field data were recorded before and after critical construction events, such as girder erection, cross-frame and formwork placement, and the deck pour. This information is being used to determine the effects of curvature on the cross-frames during construction by using axial stresses and strains and on the girders by using warping stresses and strains.


Author(s):  
Yifan Zhu ◽  
Chaoran Xu ◽  
Chung C. Fu

A curved and/or skewed steel I-girder bridge, in addition to the basic vertical shear and bending effects, will be subjected to torsional and warping effects. Thus, simplified hand calculation and line girder methods, might not be enough when bridges are to be analyzed. Refined methods, termed by AASHTO, have to be adopted. This paper has investigated the closeness and difference between curved bridge finite element models using 2-D gird and 3-D shell elements of I-girders, both are part of AASHTO refined method. Moreover, the results are calibrated by comparing analysis result with various two-dimensional and three-dimensional computations with varied curvature effects. It is concluded that when introducing torsional effects to finite element models, the modified torsional constant J with consideration of warping effect should be taken into the 2-D grid model as a refined model. When using 3-D shell elements as the refined model, stiffeners and connection plates play an important role of global model stiffness and should not be ignored, especially for sharp curved steel I-girder bridges.


Sign in / Sign up

Export Citation Format

Share Document