EVALUATION OF IMPLICIT TIME MARCHING SCHEMES FOR HIGH-ORDER SPECTRAL DIFFERENCE METHODS

Author(s):  
Eduardo Jourdan ◽  
Fábio Mallaco Moreira ◽  
Carlos Breviglieri ◽  
André Ribeiro de Barros Aguiar ◽  
João Luiz F. Azevedo
2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


Author(s):  
Morteza Rahmanpour ◽  
Reza Ebrahimi ◽  
Mehrzad Shams

A numerical method for calculation of strong radiation for two-dimensional reactive air flow field is developed. The governing equations are taken to be two dimensional, compressible Reynolds-average Navier-Stokes and species transport equations. Also, radiation heat flux in energy equation is evaluated using a model of discrete ordinate method. The model used S4 approximation to reduce the governing system of integro-differential equations to coupled set of partial differential equations. A multiband model is used to construct absorption coefficients. Tangent slab approximation is assumed to determine the characteristic parameters needed in the Discrete Ordinates Method. The turbulent diffusion and heat fluxes are modeled by Baldwin and Lomax method. The flow solution is obtained with a fully implicit time marching method. A thermochemical nonequilibrium formulation appropriate to hypersonic transitional flow of air is presented. The method is compared with existing experimental results and good agreement is observed.


Sign in / Sign up

Export Citation Format

Share Document