scholarly journals Contrasting patterns of population structure and demographic history in cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) from New Zealand

2021 ◽  
Author(s):  
N Muangmai ◽  
CI Fraser ◽  
Giuseppe Zuccarello

This is the peer reviewed version of the following article: [Muangmai, N., Fraser, C.I., and Zuccarello, G.C. (2015). Contrasting patterns of population structure and demographic history in cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) from New Zealand. Journal of Phycology 51, 574–585.], which has been published in final form at https://doi.org/10.1111/jpy.12305. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions: https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html#3.

2021 ◽  
Author(s):  
N Muangmai ◽  
CI Fraser ◽  
Giuseppe Zuccarello

This is the peer reviewed version of the following article: [Muangmai, N., Fraser, C.I., and Zuccarello, G.C. (2015). Contrasting patterns of population structure and demographic history in cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) from New Zealand. Journal of Phycology 51, 574–585.], which has been published in final form at https://doi.org/10.1111/jpy.12305. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions: https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html#3.


2021 ◽  
Author(s):  
◽  
Leah Kemp

<p>Pseudocaranx georgianus is a commercially important fishery in New Zealand. Currently, the management of this fishery assumes that Quota Management Areas comprise single biological stocks of a single species. However, little is known regarding the population structure of New Zealand P. georgianus and morphological data suggests that a cryptic Pseudocaranx species is included within these fisheries.  Whole genome sequence data was used to assemble and describe the first P. georgianus mitogenome. Primers were developed to produce the first genetic sequence data for New Zealand P. georgianus. The cytochrome c oxidase subunit I (COI) gene was sequenced for fourteen P. georgianus from New Zealand waters. These were compared phylogenetically with existing COI sequence data for P. georgianus from Australia and other Pseudocaranx species from a world-wide distribution. The hyper-variable control region of 304 P. georgianus sampled throughout New Zealand’s North Island and 68 P. georgianus from three locations in Western Australia were also sequenced. These sequences were used to explore the population structure and demographic history of New Zealand P. georgianus using haplotype networks, AMOVA’s, genetic diversity measures, Tajima’s D, Fu’s F and Bayesian migration analyses.  The P. georgianus mitogenome is typical of Cartilaginous fish species showing no major gene rearrangements, typical gene region lengths and stop and start codons. While assembling the P. georgianus mitogenome, this thesis demonstrates the importance of key methodological choices made when assembling mitogenomes from whole genome sequence data in silco in Geneious version 11.1. The choice of reference mitogenome has the largest influence on the quality of the assembly, impacting the annotation of the final mitogenome and the resolution of uncertain DNA regions. Increasing the number of mapping iterations increased the quality of the assembly but has a limited ability to mitigate the effects of using a poor reference mitogenome. Overall, I demonstrate the need to investigate and report the quality of published mitogenomes.   All Pseudocaranx species were monophyletic on the COI gene, supporting the current taxonomy of the Pseudocaranx complex. P. georgianus from Western Australia and New Zealand’s North Island represent a monophyletic clade pending a taxonomic verification that two Pseudocaranx dentex sampled in Australia are in fact P. georgianus.   No evidence was found to suggest that either of the New Zealand or Western Australian populations of P. georgianus are isolated by distance or clearly structured as distinct stocks. However, some populations of New Zealand P. georgianus were genetically distinct, including fish sampled from Raglan and the Bay of Plenty (FST of 0.02698 (p-value: 0.00901+-0.0091) as well as the North Cape and North Taranaki Bight (FST: 0.02698, p-value: 0.00901+-0.0091).   Some evidence was found to support the claim that P. georgianus along the west coast of New Zealand’s North Island is structured and no evidence was found to refute the claim that fish from the Bay of Plenty are the same biological stock as fish from TRE2. Highly divergent control region sequences of fish sampled from Three Kings Islands and the Kermadec Islands suggest that these fish could be a species distinct from P. georgianus. Two genetically distinct populations of P. georgianus were identified in New Zealand’s North Island and Western Australia (FST: 0.03517, p-value < 0.001), but further research would be required to determine if they are distinct species or populations. One juvenile population sampled in Whangarei had a high level of genetic connectivity with adult P. georgianus throughout New Zealand’s North Island, likely reflecting the batch spawning and occasional long-distance migration behaviour of P. georgianus.  Negative Tajima’s D and Fu’s F statistics (D: -1.50612, p-value: 0.018; F: -23.54376, p-value: 0.011), unimodal mismatch distributions and skyline plots indicate that the New Zealand P. georgianus population has undergone a population expansion, possibly resulting from a geographic range expansion.The Western Australian population may also have undergone a population expansion (D: -1.27903, p-value: 0.086; F: -24.11497, p-value < 0.00001). However, a multimodal mismatch distribution (Harpending’s Raggedness index: 0.00454591, p-value: 0.02) indicated that there is some stability in the size of this population.   This thesis is a first genetic investigation into New Zealand P. georgianus and has provided important biological insights into this species. Valuable information is revealed which will inform the management of New Zealand P. georgianus fisheries as inputs for stock assessment models. Additionally, several future research directions have been revealed which will further extend our knowledge of this taonga. For example, future genetic and taxonomic analyses may reveal a cryptic Pseudocaranx species occurring in the Three Kings and Kermadec Islands.</p>


2021 ◽  
Author(s):  
◽  
Alexander Verry

<p>A fundamental goal of fisheries management is sustainable harvesting and the preservation of properly functioning populations. Therefore, an important aspect of management is the identification of demographically independent populations (stocks), which is achieved by estimating the movement of individuals between areas. A range of methods have been developed to determine the level of connectivity among populations; some measure this directly (e.g. mark-recapture) while others use indirect measures (e.g. population genetics). Each species presents a different set of challenges for methods that estimate levels of connectivity. Metanephrops challengeri is a species of nephropid lobster that supports a commercial fishery and inhabits the continental shelf and slope of New Zealand. Very little research on population structure has been reported for this species and it presents a unique set of challenges compared to finfish species. M. challengeri have a short pelagic larval duration lasting up to five days which limits the dispersal potential of larvae, potentially leading to low levels of connectivity among populations. The aim of this study was to examine the genetic population structure of the New Zealand M. challengeri fishery.  DNA was extracted from M. challengeri samples collected from the eastern coast of the North Island (from the Bay of Plenty to the Wairarapa), the Chatham Rise, and near the Auckland Islands. DNA from the mitochondrial CO1 gene and nuclear ITS-1 region was amplified and sequenced. The aligned dataset of DNA sequences was then used to estimate levels of both genetic diversity and differentiation, and examine demographic history. Analyses of population structure indicate that M. challengeri from the Auckland Islands region are genetically distinct from M. challengeri inhabiting the Chatham Rise, and those collected from waters off the eastern coast of the North Island. There appears to be gene flow among the sampling sites off the eastern coast of the North Island and on the Chatham Rise, but some isolation by distance was detected. These results indicate that some of these populations may be demographically uncoupled. Genetic diversity estimates combined with Bayesian skyline plots and demographic history parameters suggest that M. challengeri populations have recently undergone a size expansion.  The genetic structuring between the Auckland Islands site and all others may be due to a putative habitat disjunction off the Otago shelf. In contrast, a largely continuously distributed population along the eastern coast of the North Island and the Chatham Rise most likely promotes gene flow as larvae can be transported limited distances by oceanic currents. Historical changes in climate may have influenced the patterns of present-day structure and genetic diversity of M. challengeri, by altering habitat availability and other characteristics of their environment. This study provides evidence that species which appear to have limited dispersal potential can still maintain connected populations, but there are situations where large breaks in suitable habitat appear to limit gene flow. The results of this study will help inform stock structure of the M. challengeri fishery, which will enable stock assessments to be more precisely aligned to natural population boundaries.</p>


2021 ◽  
Author(s):  
◽  
Alexander Verry

<p>A fundamental goal of fisheries management is sustainable harvesting and the preservation of properly functioning populations. Therefore, an important aspect of management is the identification of demographically independent populations (stocks), which is achieved by estimating the movement of individuals between areas. A range of methods have been developed to determine the level of connectivity among populations; some measure this directly (e.g. mark-recapture) while others use indirect measures (e.g. population genetics). Each species presents a different set of challenges for methods that estimate levels of connectivity. Metanephrops challengeri is a species of nephropid lobster that supports a commercial fishery and inhabits the continental shelf and slope of New Zealand. Very little research on population structure has been reported for this species and it presents a unique set of challenges compared to finfish species. M. challengeri have a short pelagic larval duration lasting up to five days which limits the dispersal potential of larvae, potentially leading to low levels of connectivity among populations. The aim of this study was to examine the genetic population structure of the New Zealand M. challengeri fishery.  DNA was extracted from M. challengeri samples collected from the eastern coast of the North Island (from the Bay of Plenty to the Wairarapa), the Chatham Rise, and near the Auckland Islands. DNA from the mitochondrial CO1 gene and nuclear ITS-1 region was amplified and sequenced. The aligned dataset of DNA sequences was then used to estimate levels of both genetic diversity and differentiation, and examine demographic history. Analyses of population structure indicate that M. challengeri from the Auckland Islands region are genetically distinct from M. challengeri inhabiting the Chatham Rise, and those collected from waters off the eastern coast of the North Island. There appears to be gene flow among the sampling sites off the eastern coast of the North Island and on the Chatham Rise, but some isolation by distance was detected. These results indicate that some of these populations may be demographically uncoupled. Genetic diversity estimates combined with Bayesian skyline plots and demographic history parameters suggest that M. challengeri populations have recently undergone a size expansion.  The genetic structuring between the Auckland Islands site and all others may be due to a putative habitat disjunction off the Otago shelf. In contrast, a largely continuously distributed population along the eastern coast of the North Island and the Chatham Rise most likely promotes gene flow as larvae can be transported limited distances by oceanic currents. Historical changes in climate may have influenced the patterns of present-day structure and genetic diversity of M. challengeri, by altering habitat availability and other characteristics of their environment. This study provides evidence that species which appear to have limited dispersal potential can still maintain connected populations, but there are situations where large breaks in suitable habitat appear to limit gene flow. The results of this study will help inform stock structure of the M. challengeri fishery, which will enable stock assessments to be more precisely aligned to natural population boundaries.</p>


2021 ◽  
Author(s):  
◽  
Leah Kemp

<p>Pseudocaranx georgianus is a commercially important fishery in New Zealand. Currently, the management of this fishery assumes that Quota Management Areas comprise single biological stocks of a single species. However, little is known regarding the population structure of New Zealand P. georgianus and morphological data suggests that a cryptic Pseudocaranx species is included within these fisheries.  Whole genome sequence data was used to assemble and describe the first P. georgianus mitogenome. Primers were developed to produce the first genetic sequence data for New Zealand P. georgianus. The cytochrome c oxidase subunit I (COI) gene was sequenced for fourteen P. georgianus from New Zealand waters. These were compared phylogenetically with existing COI sequence data for P. georgianus from Australia and other Pseudocaranx species from a world-wide distribution. The hyper-variable control region of 304 P. georgianus sampled throughout New Zealand’s North Island and 68 P. georgianus from three locations in Western Australia were also sequenced. These sequences were used to explore the population structure and demographic history of New Zealand P. georgianus using haplotype networks, AMOVA’s, genetic diversity measures, Tajima’s D, Fu’s F and Bayesian migration analyses.  The P. georgianus mitogenome is typical of Cartilaginous fish species showing no major gene rearrangements, typical gene region lengths and stop and start codons. While assembling the P. georgianus mitogenome, this thesis demonstrates the importance of key methodological choices made when assembling mitogenomes from whole genome sequence data in silco in Geneious version 11.1. The choice of reference mitogenome has the largest influence on the quality of the assembly, impacting the annotation of the final mitogenome and the resolution of uncertain DNA regions. Increasing the number of mapping iterations increased the quality of the assembly but has a limited ability to mitigate the effects of using a poor reference mitogenome. Overall, I demonstrate the need to investigate and report the quality of published mitogenomes.   All Pseudocaranx species were monophyletic on the COI gene, supporting the current taxonomy of the Pseudocaranx complex. P. georgianus from Western Australia and New Zealand’s North Island represent a monophyletic clade pending a taxonomic verification that two Pseudocaranx dentex sampled in Australia are in fact P. georgianus.   No evidence was found to suggest that either of the New Zealand or Western Australian populations of P. georgianus are isolated by distance or clearly structured as distinct stocks. However, some populations of New Zealand P. georgianus were genetically distinct, including fish sampled from Raglan and the Bay of Plenty (FST of 0.02698 (p-value: 0.00901+-0.0091) as well as the North Cape and North Taranaki Bight (FST: 0.02698, p-value: 0.00901+-0.0091).   Some evidence was found to support the claim that P. georgianus along the west coast of New Zealand’s North Island is structured and no evidence was found to refute the claim that fish from the Bay of Plenty are the same biological stock as fish from TRE2. Highly divergent control region sequences of fish sampled from Three Kings Islands and the Kermadec Islands suggest that these fish could be a species distinct from P. georgianus. Two genetically distinct populations of P. georgianus were identified in New Zealand’s North Island and Western Australia (FST: 0.03517, p-value < 0.001), but further research would be required to determine if they are distinct species or populations. One juvenile population sampled in Whangarei had a high level of genetic connectivity with adult P. georgianus throughout New Zealand’s North Island, likely reflecting the batch spawning and occasional long-distance migration behaviour of P. georgianus.  Negative Tajima’s D and Fu’s F statistics (D: -1.50612, p-value: 0.018; F: -23.54376, p-value: 0.011), unimodal mismatch distributions and skyline plots indicate that the New Zealand P. georgianus population has undergone a population expansion, possibly resulting from a geographic range expansion.The Western Australian population may also have undergone a population expansion (D: -1.27903, p-value: 0.086; F: -24.11497, p-value < 0.00001). However, a multimodal mismatch distribution (Harpending’s Raggedness index: 0.00454591, p-value: 0.02) indicated that there is some stability in the size of this population.   This thesis is a first genetic investigation into New Zealand P. georgianus and has provided important biological insights into this species. Valuable information is revealed which will inform the management of New Zealand P. georgianus fisheries as inputs for stock assessment models. Additionally, several future research directions have been revealed which will further extend our knowledge of this taonga. For example, future genetic and taxonomic analyses may reveal a cryptic Pseudocaranx species occurring in the Three Kings and Kermadec Islands.</p>


Sign in / Sign up

Export Citation Format

Share Document