scholarly journals Pareto front feature selection based on artificial bee colony optimization

2021 ◽  
Author(s):  
E Hancer ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
D Karaboga ◽  
B Akay

© 2017 Elsevier Inc. Feature selection has two major conflicting aims, i.e., to maximize the classification performance and to minimize the number of selected features to overcome the curse of dimensionality. To balance their trade-off, feature selection can be handled as a multi-objective problem. In this paper, a feature selection approach is proposed based on a new multi-objective artificial bee colony algorithm integrated with non-dominated sorting procedure and genetic operators. Two different implementations of the proposed approach are developed: ABC with binary representation and ABC with continuous representation. Their performance are examined on 12 benchmark datasets and the results are compared with those of linear forward selection, greedy stepwise backward selection, two single objective ABC algorithms and three well-known multi-objective evolutionary computation algorithms. The results show that the proposed approach with the binary representation outperformed the other methods in terms of both the dimensionality reduction and the classification accuracy.

2021 ◽  
Author(s):  
E Hancer ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
D Karaboga ◽  
B Akay

© 2017 Elsevier Inc. Feature selection has two major conflicting aims, i.e., to maximize the classification performance and to minimize the number of selected features to overcome the curse of dimensionality. To balance their trade-off, feature selection can be handled as a multi-objective problem. In this paper, a feature selection approach is proposed based on a new multi-objective artificial bee colony algorithm integrated with non-dominated sorting procedure and genetic operators. Two different implementations of the proposed approach are developed: ABC with binary representation and ABC with continuous representation. Their performance are examined on 12 benchmark datasets and the results are compared with those of linear forward selection, greedy stepwise backward selection, two single objective ABC algorithms and three well-known multi-objective evolutionary computation algorithms. The results show that the proposed approach with the binary representation outperformed the other methods in terms of both the dimensionality reduction and the classification accuracy.


2018 ◽  
Vol 422 ◽  
pp. 462-479 ◽  
Author(s):  
Emrah Hancer ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
Dervis Karaboga ◽  
Bahriye Akay

Author(s):  
Yannis Marinakis ◽  
Magdalene Marinaki ◽  
Nikolaos Matsatsinis ◽  
Constantin Zopounidis

Nature-inspired methods are used in various fields for solving a number of problems. This study uses a nature-inspired method, artificial bee colony optimization that is based on the foraging behaviour of bees, for a financial classification problem. Financial decisions are often based on classification models, which are used to assign a set of observations into predefined groups. One important step toward the development of accurate financial classification models involves the selection of the appropriate independent variables (features) that are relevant to the problem. The proposed method uses a discrete version of the artificial bee colony algorithm for the feature selection step while nearest neighbour based classifiers are used for the classification step. The performance of the method is tested using various benchmark datasets from UCI Machine Learning Repository and in a financial classification task involving credit risk assessment. Its results are compared with the results of other nature-inspired methods.


2020 ◽  
Vol 88 ◽  
pp. 106041 ◽  
Author(s):  
Xiao-han Wang ◽  
Yong Zhang ◽  
Xiao-yan Sun ◽  
Yong-li Wang ◽  
Chang-he Du

2020 ◽  
Author(s):  
Esra Sarac Essiz ◽  
Murat Oturakci

Abstract As a nature-inspired algorithm, artificial bee colony (ABC) is an optimization algorithm that is inspired by the search behaviour of honey bees. The main aim of this study is to examine the effects of the ABC-based feature selection algorithm on classification performance for cyberbullying, which has become a significant worldwide social issue in recent years. With this purpose, the classification performance of the proposed ABC-based feature selection method is compared with three different traditional methods such as information gain, ReliefF and chi square. Experimental results present that ABC-based feature selection method outperforms than three traditional methods for the detection of cyberbullying. The Macro averaged F_measure of the data set is increased from 0.659 to 0.8 using proposed ABC-based feature selection method.


Sign in / Sign up

Export Citation Format

Share Document