scholarly journals Reverse mathematics of rings

2021 ◽  
Author(s):  
◽  
Jordan Barrett

<p>Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follows. We look at fundamental results concerning primary ideals and the radical of an ideal, concepts previously unstudied in reverse mathematics. Then we turn to a fine-grained analysis of four different definitions of Noetherian in the weak base system RCA_0 + Sigma-2 induction. Finally, we begin a systematic study of various types of integral domains: PIDs, UFDs and Bézout and GCD domains.</p>

2021 ◽  
Author(s):  
◽  
Jordan Barrett

<p>Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follows. We look at fundamental results concerning primary ideals and the radical of an ideal, concepts previously unstudied in reverse mathematics. Then we turn to a fine-grained analysis of four different definitions of Noetherian in the weak base system RCA_0 + Sigma-2 induction. Finally, we begin a systematic study of various types of integral domains: PIDs, UFDs and Bézout and GCD domains.</p>


2021 ◽  
Author(s):  
◽  
Valentin B Bura

<p>This thesis establishes new results concerning the proof-theoretic strength of two classic theorems of Ring Theory relating to factorization in integral domains. The first theorem asserts that if every irreducible is a prime, then every element has at most one decomposition into irreducibles; the second states that well-foundedness of divisibility implies the existence of an irreducible factorization for each element. After introductions to the Algebra framework used and Reverse Mathematics, we show that the first theorem is provable in the base system of Second Order Arithmetic RCA0, while the other is equivalent over RCA0 to the system ACA0.</p>


2021 ◽  
Author(s):  
◽  
Valentin B Bura

<p>This thesis establishes new results concerning the proof-theoretic strength of two classic theorems of Ring Theory relating to factorization in integral domains. The first theorem asserts that if every irreducible is a prime, then every element has at most one decomposition into irreducibles; the second states that well-foundedness of divisibility implies the existence of an irreducible factorization for each element. After introductions to the Algebra framework used and Reverse Mathematics, we show that the first theorem is provable in the base system of Second Order Arithmetic RCA0, while the other is equivalent over RCA0 to the system ACA0.</p>


2004 ◽  
Vol 69 (3) ◽  
pp. 683-712 ◽  
Author(s):  
Peter Cholak ◽  
Alberto Marcone ◽  
Reed Solomon

In reverse mathematics, one formalizes theorems of ordinary mathematics in second order arithmetic and attempts to discover which set theoretic axioms are required to prove these theorems. Often, this project involves making choices between classically equivalent definitions for the relevant mathematical concepts. In this paper, we consider a number of equivalent definitions for the notions of well quasi-order and better quasi-order and examine how difficult it is to prove the equivalences of these definitions.As usual in reverse mathematics, we work in the context of subsystems of second order arithmetic and take RCA0 as our base system. RCA0 is the subsystem formed by restricting the comprehension scheme in second order arithmetic to formulas and adding a formula induction scheme for formulas. For the purposes of this paper, we will be concerned with fairly weak extensions of RCA0 (indeed strictly weaker than the subsystem ACA0 which is formed by extending the comprehension scheme in RCA0 to cover all arithmetic formulas) obtained by adjoining certain combinatorial principles to RCA0. Among these, the most widely used in reverse mathematics is Weak König's Lemma; the resulting theory WKL0 is extensively documented in [11] and elsewhere.We give three other combinatorial principles which we use in this paper. In these principles, we use k to denote not only a natural number but also the finite set {0, …, k − 1}.


2020 ◽  
Vol 8 ◽  
Author(s):  
Takayuki Kihara

Abstract In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .


2007 ◽  
Vol 72 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Denis R. Hirschfeldt ◽  
Richard A. Shore

AbstractWe investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.


1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

2010 ◽  
Vol 16 (3) ◽  
pp. 378-402 ◽  
Author(s):  
Richard A. Shore

AbstractThis paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main systems of reverse mathematics. While retaining the usual base theory and working still within second order arithmetic, theorems are described that range from those far below the usual systems to ones far above.


Sign in / Sign up

Export Citation Format

Share Document