scholarly journals Reverse Mathematics of  Divisibility in Integral  Domains

2021 ◽  
Author(s):  
◽  
Valentin B Bura

<p>This thesis establishes new results concerning the proof-theoretic strength of two classic theorems of Ring Theory relating to factorization in integral domains. The first theorem asserts that if every irreducible is a prime, then every element has at most one decomposition into irreducibles; the second states that well-foundedness of divisibility implies the existence of an irreducible factorization for each element. After introductions to the Algebra framework used and Reverse Mathematics, we show that the first theorem is provable in the base system of Second Order Arithmetic RCA0, while the other is equivalent over RCA0 to the system ACA0.</p>

2021 ◽  
Author(s):  
◽  
Valentin B Bura

<p>This thesis establishes new results concerning the proof-theoretic strength of two classic theorems of Ring Theory relating to factorization in integral domains. The first theorem asserts that if every irreducible is a prime, then every element has at most one decomposition into irreducibles; the second states that well-foundedness of divisibility implies the existence of an irreducible factorization for each element. After introductions to the Algebra framework used and Reverse Mathematics, we show that the first theorem is provable in the base system of Second Order Arithmetic RCA0, while the other is equivalent over RCA0 to the system ACA0.</p>


2021 ◽  
Author(s):  
◽  
Jordan Barrett

<p>Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follows. We look at fundamental results concerning primary ideals and the radical of an ideal, concepts previously unstudied in reverse mathematics. Then we turn to a fine-grained analysis of four different definitions of Noetherian in the weak base system RCA_0 + Sigma-2 induction. Finally, we begin a systematic study of various types of integral domains: PIDs, UFDs and Bézout and GCD domains.</p>


2004 ◽  
Vol 69 (3) ◽  
pp. 683-712 ◽  
Author(s):  
Peter Cholak ◽  
Alberto Marcone ◽  
Reed Solomon

In reverse mathematics, one formalizes theorems of ordinary mathematics in second order arithmetic and attempts to discover which set theoretic axioms are required to prove these theorems. Often, this project involves making choices between classically equivalent definitions for the relevant mathematical concepts. In this paper, we consider a number of equivalent definitions for the notions of well quasi-order and better quasi-order and examine how difficult it is to prove the equivalences of these definitions.As usual in reverse mathematics, we work in the context of subsystems of second order arithmetic and take RCA0 as our base system. RCA0 is the subsystem formed by restricting the comprehension scheme in second order arithmetic to formulas and adding a formula induction scheme for formulas. For the purposes of this paper, we will be concerned with fairly weak extensions of RCA0 (indeed strictly weaker than the subsystem ACA0 which is formed by extending the comprehension scheme in RCA0 to cover all arithmetic formulas) obtained by adjoining certain combinatorial principles to RCA0. Among these, the most widely used in reverse mathematics is Weak König's Lemma; the resulting theory WKL0 is extensively documented in [11] and elsewhere.We give three other combinatorial principles which we use in this paper. In these principles, we use k to denote not only a natural number but also the finite set {0, …, k − 1}.


2021 ◽  
Author(s):  
◽  
Jordan Barrett

<p>Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follows. We look at fundamental results concerning primary ideals and the radical of an ideal, concepts previously unstudied in reverse mathematics. Then we turn to a fine-grained analysis of four different definitions of Noetherian in the weak base system RCA_0 + Sigma-2 induction. Finally, we begin a systematic study of various types of integral domains: PIDs, UFDs and Bézout and GCD domains.</p>


2010 ◽  
Vol 16 (3) ◽  
pp. 378-402 ◽  
Author(s):  
Richard A. Shore

AbstractThis paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main systems of reverse mathematics. While retaining the usual base theory and working still within second order arithmetic, theorems are described that range from those far below the usual systems to ones far above.


1993 ◽  
Vol 58 (2) ◽  
pp. 557-578 ◽  
Author(s):  
Douglas K. Brown ◽  
Stephen G. Simpson

AbstractWorking within weak subsystems of second-order arithmetic Z2 we consider two versions of the Baire Category theorem which are not equivalent over the base system RCA0. We show that one version (B.C.T.I) is provable in RCA0 while the second version (B.C.T.II) requires a stronger system. We introduce two new subsystems of Z2, which we call and , and , show that suffices to prove B.C.T.II. Some model theory of and its importance in view of Hilbert's program is discussed, as well as applications of our results to functional analysis.


2016 ◽  
Vol 81 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
DAMIR D. DZHAFAROV

AbstractThis paper is a contribution to the growing investigation of strong reducibilities between ${\rm{\Pi }}_2^1$ statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem for pairs. Among other results, we establish that the principle $SRT_2^2$ is not Weihrauch or strongly computably reducible to $D_{ < \infty }^2$, and that COH is not Weihrauch reducible to $SRT_{ < \infty }^2$, or strongly computably reducible to $SRT_2^2$. The last result also extends a prior result of Dzhafarov [9]. We introduce a number of new techniques for controlling the combinatorial and computability-theoretic properties of the problems and solutions we construct in our arguments.


2014 ◽  
Vol 20 (2) ◽  
pp. 170-200 ◽  
Author(s):  
C. T. CHONG ◽  
WEI LI ◽  
YUE YANG

AbstractWe give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.


2001 ◽  
Vol 66 (1) ◽  
pp. 192-206 ◽  
Author(s):  
Reed Solomon

Reverse mathematics uses subsystems of second order arithmetic to determine which set existence axioms are required to prove particular theorems. Surprisingly, almost every theorem studied is either provable in RCA0 or equivalent over RCA0 to one of four other subsystems: WKL0, ACA0, ATR0 or – CA0. Of these subsystems, – CA0 has the fewest known equivalences. This article presents a new equivalence of – C0 which comes from ordered group theory.One of the fundamental problems about ordered groups is to classify all possible orders for various classes of orderable groups. In general, this problem is extremely difficult to solve. Mal'tsev [1949] solved a related problem by showing that the order type of a countable ordered group is ℤαℚε where ℤ is the order type of the integers, ℚ is the order type of the rationals, α is a countable ordinal, and ε is either 0 or 1. The goal of this article is to prove that this theorem is equivalent over RCA0 to – CA0.In Section 2, we give the basic definitions and notation for RCA0, ACA0 and CA0 as well as for ordered groups. For more information on reverse mathematics, see Friedman, Simpson, and Smith [1983] or Simpson [1999] and for ordered groups, see Kokorin and Kopytov [1974] or Fuchs [1963]. Our notation will follow these sources. In Section 3, we show that – CA0 suffices to prove Mal'tsev's Theorem and the reversal is done over RCA0 in Section 4.


2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Farida Kachapova

This paper describes axiomatic theories SA and SAR, which are versions of second order arithmetic with countably many sorts for sets of natural numbers. The theories are intended to be applied in reverse mathematics because their multi-sorted language allows to express some mathematical statements in more natural form than in the standard second order arithmetic. We study metamathematical properties of the theories SA, SAR and their fragments. We show that SA is mutually interpretable with the theory of arithmetical truth PATr obtained from the Peano arithmetic by adding infinitely many truth predicates. Corresponding fragments of SA and PATr are also mutually interpretable. We compare the proof-theoretical strengths of the fragments; in particular, we show that each fragment SAs with sorts <=s is weaker than next fragment SAs+1.


Sign in / Sign up

Export Citation Format

Share Document