scholarly journals Mechanistic Investigation of 1,5-Anti Stereoinduction in Aldol Reactions

2021 ◽  
Author(s):  
◽  
Xuyu Liu

<p>Peloruside A (+)-1 is a novel secondary metabolite isolated from a New Zealand marine sponge (Mycale hentscheli) by Northcote and West of Victoria University. Because it has a polyketide backbone, aldol reactions have been widely employed for its total synthesis. Aldol reactions displaying 1,5-anti stereoinduction mediated by the C₁₅ stereocenter (according to peloruside A numbering) have proven useful for the synthesis of the C₁₁–C₁₂ bond of peloruside A and analogues. This project is the continuation of Stocker's and Turner's studies on the excellent stereoinduction of 2 in boron-mediated aldol reactions. The relative stereochemistry of the corresponding aldol product is consistence with the expectations of Kishi's C database for a 1,5-anti product. Furthermore, the diphenylsilyl acetal tethered eight-membered ring of 2 has proven to be essential for its stereoinduction, while the homoallylic oxygen does not appear to play a significant role.  Although 1,5-anti aldol reactions have been used frequently in the syntheses of polyketidederived natural products, the underlying mechanism for the 1,5-anti-stereoinduction remains inconclusive. Three models have been proposed, including Hoberg's π-stacking model, Goodman's hydrogen-bonding model, and a modification of Abiko's diborylated model. The underlying mechanism for the stereoinduction of 2 was investigated using variable temperature NMR, 1D NOESY and 1D ROESY experiments. It was found that Hoberg's and Abiko's models are not able to explain the stereoinduction of 2 and that Goodman's model used for explaining the transition states of the aldol reaction of β-trimethylsilyloxy methyl ketones is also not suitable.  A modification of Goodman's model has been proposed to explain the excellent 1,5-anti stereoinduction of 2. While attempts to couple 2 and 3 to a variety of bulky aldehydes bearing groups with different steric and electronic factors in boron-mediated aldol reactions were unsuccessful, the reaction of 3 with 4-bromobenzaldehyde using TiCl₄ and DIPEA afforded an excellent yield (>99%) of the aldol product. This revealed the six-membered ring in the TS of the boron-mediated aldol reaction is too compact for 2 and 3. However, it was found that 2 is incompatible with TiCl₄. Key questions regarding the 1,5-anti-stereoinduction of 2 have been answered and a modified procedure for the NMR investigation of an aldol reaction is described in this thesis.</p>

2021 ◽  
Author(s):  
◽  
Xuyu Liu

<p>Peloruside A (+)-1 is a novel secondary metabolite isolated from a New Zealand marine sponge (Mycale hentscheli) by Northcote and West of Victoria University. Because it has a polyketide backbone, aldol reactions have been widely employed for its total synthesis. Aldol reactions displaying 1,5-anti stereoinduction mediated by the C₁₅ stereocenter (according to peloruside A numbering) have proven useful for the synthesis of the C₁₁–C₁₂ bond of peloruside A and analogues. This project is the continuation of Stocker's and Turner's studies on the excellent stereoinduction of 2 in boron-mediated aldol reactions. The relative stereochemistry of the corresponding aldol product is consistence with the expectations of Kishi's C database for a 1,5-anti product. Furthermore, the diphenylsilyl acetal tethered eight-membered ring of 2 has proven to be essential for its stereoinduction, while the homoallylic oxygen does not appear to play a significant role.  Although 1,5-anti aldol reactions have been used frequently in the syntheses of polyketidederived natural products, the underlying mechanism for the 1,5-anti-stereoinduction remains inconclusive. Three models have been proposed, including Hoberg's π-stacking model, Goodman's hydrogen-bonding model, and a modification of Abiko's diborylated model. The underlying mechanism for the stereoinduction of 2 was investigated using variable temperature NMR, 1D NOESY and 1D ROESY experiments. It was found that Hoberg's and Abiko's models are not able to explain the stereoinduction of 2 and that Goodman's model used for explaining the transition states of the aldol reaction of β-trimethylsilyloxy methyl ketones is also not suitable.  A modification of Goodman's model has been proposed to explain the excellent 1,5-anti stereoinduction of 2. While attempts to couple 2 and 3 to a variety of bulky aldehydes bearing groups with different steric and electronic factors in boron-mediated aldol reactions were unsuccessful, the reaction of 3 with 4-bromobenzaldehyde using TiCl₄ and DIPEA afforded an excellent yield (>99%) of the aldol product. This revealed the six-membered ring in the TS of the boron-mediated aldol reaction is too compact for 2 and 3. However, it was found that 2 is incompatible with TiCl₄. Key questions regarding the 1,5-anti-stereoinduction of 2 have been answered and a modified procedure for the NMR investigation of an aldol reaction is described in this thesis.</p>


2020 ◽  
Author(s):  
Veejendra Yadav

An new overall lower energy pathway for the amine-catalysed Morita-Baylis-Hillman reaction is proposed from computations at the M06-2X/6-311++G(d,p) level. The pathway involves proton-transfer from the ammonium ion to the alkoxide formed from the aldol reaction through a seven-membered ring transition state (TS) structure followed by highly exothermic Hofmann<i> </i>elimination through a five-membered ring TS structure to form the product and also release the catalyst to carry on with the process all over again.


2020 ◽  
Author(s):  
Veejendra Yadav

An new overall lower energy pathway for the amine-catalysed Morita-Baylis-Hillman reaction is proposed from computations at the M06-2X/6-311++G(d,p) level. The pathway involves proton-transfer from the ammonium ion to the alkoxide formed from the aldol reaction through a seven-membered ring transition state (TS) structure followed by highly exothermic Hofmann<i> </i>elimination through a five-membered ring TS structure to form the product and also release the catalyst to carry on with the process all over again.


2015 ◽  
Vol 51 (96) ◽  
pp. 17116-17119 ◽  
Author(s):  
Chewei Yeh ◽  
Yan-Ru Sun ◽  
Shing-Jong Huang ◽  
Yeun-Min Tsai ◽  
Soofin Cheng

The chiral selectivities were altered and high diastereo- and enantio-selectivities of the products were obtained in water medium without adding acid co-catalysts when a primary–tertiary diamine catalyst was immobilized on mesoporous SBA-15 to form a recyclable catalyst for the direct asymmetric aldol reaction of cyclohexanone with p-nitrobenzaldehyde.


2015 ◽  
Vol 21 (34) ◽  
pp. 12026-12033 ◽  
Author(s):  
Mikhail A. Kabeshov ◽  
Ondřej Kysilka ◽  
Lubomír Rulíšek ◽  
Yury V. Suleimanov ◽  
Marco Bella ◽  
...  

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 414 ◽  
Author(s):  
Hao-yun Shi ◽  
Yang Xie ◽  
Pei Hu ◽  
Zi-qiong Guo ◽  
Yi-hong Lu ◽  
...  

Alotamide is a cyclic depsipetide isolated from a marine cyanobacterium and possesses a unique activation of calcium influx in murine cerebrocortical neurons (EC50 4.18 µM). Due to its limited source, the three stereocenters (C19, C28, and C30) in its polyketide fragment remain undetermined. In this study, the first asymmetric synthesis of its polyketide fragment was achieved. Four relative possible diastereomers were constructed with a boron-mediated enantioselective aldol reaction and Julia–Kocienski olefination as the key steps. Comparison of 13C NMR spectra revealed the relative structure of fragment C15–C32 of alotamide.


2021 ◽  
Author(s):  
◽  
Oliver Bayley

<p>Cancer is currently the second largest cause of death globally, leading to a high demand for new and effective chemotherapeutics. For years, natural products have been used as a source of new bioactive compounds; of particular interest in this context, as a source of new chemotherapeutics. One chemotherapeutic candidate which has attracted significant attention in synthetic and medicinal chemistry communities, is peloruside A. Peloruside A is a bioactive secondary metabolite isolated from the New Zealand marine sponge Mycale hentscheli. Since its discovery, peloruside A has shown great promise in cancer studies both in vivo and in vitro with effects observed even at nanomolar concentrations. These chemotherapeutic effects have been shown to occur by halting cell division at the G2/M checkpoint via microtubule stabilisation. Of particular interest is that this stabilisation occurs in a manner distinct from that of the already established taxane class of microtubule stabilising drugs. This means that peloruside A is able to offer both inhibition of cell division in Taxol® resistant cells and synergistic inhibition alongside the current taxane drugs. Since peloruside A is not abundantly available from its natural source, there is a strong incentive for the development of new synthetic strategies for peloruside A production. Unfortunately attempts at aquaculture and attempts at developing an industrial scale synthesis have both proven unsuccessful thus far. In an attempt to overcome some of the difficulties with the scale up of peloruside, analogues have been developed that are intended to have similar bioactivity to peloruside A but simpler, more concise, synthetic routes. These analogues will also enable further elucidation of the binding properties of peloruside A. This project focuses on the generation of a functionalised pyran fragment, starting from a simple carbohydrate, that may be incorporated into the proposed analogues.</p>


2019 ◽  
Vol 6 (2) ◽  
pp. 171-176
Author(s):  
Rajasekhar Dodda ◽  
Sampak Samanta ◽  
Matthew Su ◽  
John Cong-Gui Zhao

Background: While proline can catalyze the asymmetric direct aldol reactions, its catalytic activity and catalyst turnover are both low. To improve the catalytic efficiency, many prolinebased organocatalysts have been developed. In this regard, prolinamide-based bifunctional catalysts have been demonstrated by us and others to be highly efficient catalysts for the direct aldol reactions. Results: Using the β-acetamido- and β-tosylamidoprolinamide catalysts, the highly enantio- and diastereoselective direct aldol reactions between enolizable ketones and aldehydes were achieved (up to >99% ee, 98:2 dr). A low catalyst loading of only 2-5 mol % of the β-tosylamidoprolinamide catalyst was needed to obtain the desired aldol products in good to high yields and high stereoselectivities. Methods: By carefully adjusting the hydrogen bonding ability of the remote β-amide hydrogen of the 1,2-diamine-based prolinamide bifunctional catalysts, the catalytic activity and the asymmetric induction of these catalysts were significantly improved for the direct aldol reaction between aldehydes and enolizable ketones. Conclusion: Some highly efficient 1,2-diamine-based bifunctional prolinamide catalysts have been developed through probing the remote β-amide hydrogen for its hydrogen bonding capability. These catalysts are easy to synthesize and high enantioselectivities may be achieved at very low catalyst loadings.


Sign in / Sign up

Export Citation Format

Share Document