scholarly journals Biological Algorithms for Digital Manufacture

2021 ◽  
Author(s):  
◽  
Louise Wotton

<p>Computational simulations are generally built upon a form or design that is near or mostly complete. Agent-based simulations are ones where the rules and behaviours are designed, creating an unpredictable output. In this research, these rules are derived from the complex systems in nature, utilising cross-disciplinary principles between architecture and biology. The abstraction of data and rules from biological structures are used to inform computational rule-sets for modelling 3D printed structures.  The simulations in this paper explore the concept of emergence: where systems have an irreducible complexity and adaptability - a series of smaller parts combined acting as a whole. The concept of agent-based simulations as a form of emergence is a tool used greatly within many areas of research as a speculative method to build form and space.  Computation rule-sets define a design intent for each simulation, demonstrating the ability to use agent-based systems and a spatial design driver. Informing the agents with design intent, allows them to adapt to their environment and to the ability and limitations of a freeform 3D printer.  The focus in this project is the design of emergent principles in nature and how they can be applied to optimize structures for use with digital fabrication methods, thus producing a new approach to designing fabricated forms.  Using a design by research approach, this research demonstrates the potential of free-form 3D printing as a technique for an integrated fabrication system. It outlines computational design techniques including the simulation of emergent phenomena to define a digital workflow that supports the integration of both emergent structures and free-form printing.</p>

2021 ◽  
Author(s):  
◽  
Louise Wotton

<p>Computational simulations are generally built upon a form or design that is near or mostly complete. Agent-based simulations are ones where the rules and behaviours are designed, creating an unpredictable output. In this research, these rules are derived from the complex systems in nature, utilising cross-disciplinary principles between architecture and biology. The abstraction of data and rules from biological structures are used to inform computational rule-sets for modelling 3D printed structures.  The simulations in this paper explore the concept of emergence: where systems have an irreducible complexity and adaptability - a series of smaller parts combined acting as a whole. The concept of agent-based simulations as a form of emergence is a tool used greatly within many areas of research as a speculative method to build form and space.  Computation rule-sets define a design intent for each simulation, demonstrating the ability to use agent-based systems and a spatial design driver. Informing the agents with design intent, allows them to adapt to their environment and to the ability and limitations of a freeform 3D printer.  The focus in this project is the design of emergent principles in nature and how they can be applied to optimize structures for use with digital fabrication methods, thus producing a new approach to designing fabricated forms.  Using a design by research approach, this research demonstrates the potential of free-form 3D printing as a technique for an integrated fabrication system. It outlines computational design techniques including the simulation of emergent phenomena to define a digital workflow that supports the integration of both emergent structures and free-form printing.</p>


Author(s):  
Lucas Puentes ◽  
Christopher McComb ◽  
Jonathan Cagan

Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Lucas Puentes

Early stages of the engineering design process are vital to shaping the final design; each subsequent step builds from the initial concept. Innovation-driven engineering problems require designers to focus heavily on early-stage design generation, with constant application and evaluation of design changes. Strategies to reduce the amount of time and effort designers spend in this phase could improve the efficiency of the design process as a whole. This paper seeks to create and demonstrate a two-tiered design grammar that encodes heuristic strategies to aid in the generation of early solution concepts. Specifically, this two-tiered grammar mimics the combination of heuristic-based strategic actions and parametric modifications employed by human designers. Rules in the higher-tier are abstract and potentially applicable to multiple design problems across a number of fields. These abstract rules are translated into a series of lower-tier rule applications in a spatial design grammar, which are inherently domain-specific. This grammar is implemented within the HSAT agent-based algorithm. Agents iteratively select actions from either the higher-tier or lower-tier. This algorithm is applied to the design of wave energy converters, devices which use the motion of ocean waves to generate electrical power. Comparisons are made between designs generated using only lower-tier rules and those generated using only higher-tier rules.


Author(s):  
Kathrin Eismann

AbstractSocial media networks (SMN) such as Facebook and Twitter are infamous for facilitating the spread of potentially false rumors. Although it has been argued that SMN enable their users to identify and challenge false rumors through collective efforts to make sense of unverified information—a process typically referred to as self-correction—evidence suggests that users frequently fail to distinguish among rumors before they have been resolved. How users evaluate the veracity of a rumor can depend on the appraisals of others who participate in a conversation. Affordances such as the searchability of SMN, which enables users to learn about a rumor through dedicated search and query features rather than relying on interactions with their relational connections, might therefore affect the veracity judgments at which they arrive. This paper uses agent-based simulations to illustrate that searchability can hinder actors seeking to evaluate the trustworthiness of a rumor’s source and hence impede self-correction. The findings indicate that exchanges between related users can increase the likelihood that trustworthy agents transmit rumor messages, which can promote the propagation of useful information and corrective posts.


2016 ◽  
Vol 168 ◽  
pp. 27-35 ◽  
Author(s):  
Hélène Dupont ◽  
Françoise Gourmelon ◽  
Mathias Rouan ◽  
Isabelle Le Viol ◽  
Christian Kerbiriou

Sign in / Sign up

Export Citation Format

Share Document