Non-destructive optical testing of the products obtained using additive manufacturing

2019 ◽  
Vol 85 (10) ◽  
pp. 76-82
Author(s):  
A. D. Ivanov ◽  
V. L. Minaev ◽  
G. N. Vishnyakov
2018 ◽  
Vol 62 (5) ◽  
pp. 1049-1057 ◽  
Author(s):  
A-F. Obaton ◽  
M-Q. Lê ◽  
V. Prezza ◽  
D. Marlot ◽  
P. Delvart ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 903 ◽  
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Alexander Kravcov ◽  
Krzysztof Grzelak ◽  
Pavel Svoboda ◽  
...  

The paper is focused on the examination of the internal quality of joints created in a multi-material additive manufacturing process. The main part of the work focuses on experimental production and non-destructive testing of restrained joints of modified PLA (polylactic acid) and ABS (Acrylonitrile butadiene styrene) three-dimensional (3D)-printed on RepRap 3D device that works on the “open source” principle. The article presents the outcomes of a non-destructive materials test in the form of the data from the Laser Amplified Ultrasonography, microscopic observations of the joints area and tensile tests of the specially designed samples. The samples with designed joints were additively manufactured of two materials: Specially blended PLA (Market name—PLA Tough) and conventionally made ABS. The tests are mainly focused on the determination of the quality of material connection in the joints area. Based on the results obtained, the samples made of two materials were compared in the end to establish which produced material joint is stronger and have a lower amount of defects.


2021 ◽  
Vol 90 (2) ◽  
pp. 102-106
Author(s):  
Noriyasu KOBAYASHI ◽  
Setsu YAMAMOTO ◽  
Takeshi HOSHI ◽  
Daisuke TSUJI

Author(s):  
Brandon Ealy ◽  
Luisana Calderon ◽  
Wenping Wang ◽  
Jay Kapat ◽  
Ilya Mingareev ◽  
...  

The limits of gas turbine technology are heavily influenced by materials and manufacturing capabilities. Inconel alloys remain the material of choice for most hot gas path components in gas turbines, however recent increases in turbine inlet temperature (TIT) are associated with the development of advanced convective cooling methods and ceramic thermal barrier coatings (TBC). Increasing cycle efficiency and cycle specific work are the primary drivers for increasing TIT. Lately, incremental performance gains responsible for increasing the allowable TIT have been made mainly through innovations in cooling technology, specifically convective cooling schemes. An emerging manufacturing technology may further facilitate the increase of allowable maximum TIT, thereby impacting cycle efficiency capabilities. Laser Additive Manufacturing (LAM) is a promising manufacturing technology that uses lasers to selectively melt powders of metal in a layer-by-layer process to directly manufacture components, paving the way to manufacture designs that are not possible with conventional casting methods. This study investigates manufacturing qualities seen in LAM methods and its ability to successfully produce complex features found in turbine blades. A leading edge segment of a turbine blade, containing both internal and external cooling features, along with an engineered-porous structure is fabricated by laser additive manufacturing of superalloy powders. Various cooling features were incorporated in the design, consisting of internal impingement cooling, internal lattice structures, and external showerhead or transpiration cooling. The internal structure was designed as a lattice of intersecting cylinders in order to mimic that of a porous material. Variance distribution between the design and manufactured leading edge segment are carried out for both internal impingement and external transpiration hole diameters. Through a non-destructive approach, the presented geometry is further analyzed against the departure of the design by utilizing x-ray computed tomography (CT). Employing this non-destructive evaluation (NDE) method, a more thorough analysis of the quality of manufacture is established by revealing the internal structures of the porous region and internal impingement array. Flow testing was performed in order to characterize the uniformity of porous regions and flow characteristics across the entire article for various pressure ratios (PR). Discharge coefficient of internal impingement arrays and porous structure are quantified. The analysis yields quantitative data on the build quality of the LAM process, providing insight as to whether or not it is a viable option for manufacture of micro-features in current turbine blade production.


2021 ◽  
Vol 121 ◽  
pp. 102443
Author(s):  
Michelle A. Helsel ◽  
John S. Popovics ◽  
Peter B. Stynoski ◽  
Eric Kreiger

Author(s):  
Janusz Kluczynski ◽  
Lucjan Sniezek ◽  
Alexander Kravcov ◽  
Krzysztof Grzelak ◽  
Pavel Svoboda ◽  
...  

The paper is focused on the examination of the internal quality of joints created in a multi-material - additive manufacturing process. The main part of the work focuses on experimental production and non-destructive testing of restrained joints of modified PLA (polylactic acid) and ABS (Acrylonitrile butadiene styrene) 3Dprinted on RepRap 3D device that works on the "open source" principle. The article presents the outcomes of non-destructive materials test in the form of the data from the Laser Amplified Ultrasonography, microscopic observations of the joints area and tensile tests of the specially designed samples. The samples with designed joints were additively manufactured of two materials: specially blended PLA (Market name – PLA Tough) and conventionally made ABS. The tests are mainly focused on the determination of the quality of material connection in the joints area. Based on the results obtained, the samples made of two materials were compared in the end to establish which produced material joint is stronger and have a lower amount of defects.


Sign in / Sign up

Export Citation Format

Share Document