scholarly journals A modified mechanical quadrature formula and its extensions

Author(s):  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Michael Th. Rassias ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractA new generalized integral identity involving first order differentiable functions is obtained. Using this identity as an auxiliary result, we then obtain some new refinements of Simpson type inequalities using a new class called as strongly (s, m)-convex functions of higher order of $$\sigma >0$$ σ > 0 . We also discuss some interesting applications of the obtained results in the theory of means. In last we present applications of the obtained results in obtaining Simpson-like quadrature formula.


2017 ◽  
Vol 9 (2) ◽  
pp. 393-406 ◽  
Author(s):  
Hu Li ◽  
Jin Huang

AbstractIn this article, we consider the numerical solution for Poisson's equation in axisymmetric geometry. When the boundary condition and source term are axisymmetric, the problem reduces to solving Poisson's equation in cylindrical coordinates in the two-dimensional (r,z) region of the original three-dimensional domain S. Hence, the original boundary value problem is reduced to a two-dimensional one. To make use of the Mechanical quadrature method (MQM), it is necessary to calculate a particular solution, which can be subtracted off, so that MQM can be used to solve the resulting Laplace problem, which possesses high accuracy order and low computing complexities. Moreover, the multivariate asymptotic error expansion of MQM accompanied with for all mesh widths hi is got. Hence, once discrete equations with coarse meshes are solved in parallel, the higher accuracy order of numerical approximations can be at least by the splitting extrapolation algorithm (SEA). Meanwhile, a posteriori asymptotic error estimate is derived, which can be used to construct self-adaptive algorithms. The numerical examples support our theoretical analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Pan Cheng ◽  
Ling Zhang

This paper will study the high accuracy numerical solutions for elastic equations with nonlinear boundary value conditions. The equations will be converted into nonlinear boundary integral equations by the potential theory, in which logarithmic singularity and Cauchy singularity are calculated simultaneously. Mechanical quadrature methods (MQMs) are presented to solve the nonlinear equations where the accuracy of the solutions is of three orders. According to the asymptotical compact convergence theory, the errors with odd powers asymptotic expansion are obtained. Following the asymptotic expansion, the accuracy of the solutions can be improved to five orders with the Richardson extrapolation. Some results are shown regarding these approximations for problems by the numerical example.


Sign in / Sign up

Export Citation Format

Share Document