scholarly journals Projectivity and unification in the varieties of locally finite monadic MV-algebras

10.29007/x7hf ◽  
2018 ◽  
Author(s):  
Antonio Di Nola ◽  
Revaz Grigolia ◽  
Giacomo Lenzi

A description of finitely generated free monadic MV-algebras anda characterization of projective monadic MV-algebras in locally finitevarieties is given. It is shown that unification type of locally finitevarieties is unitary.


2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.



2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).



2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.





Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.



2021 ◽  
Vol 38 (1) ◽  
pp. 223-230
Author(s):  
MIHAIL URSUL ◽  
◽  
JOHN LANTA ◽  

We study in this paper conditions under which nilradicals of totally disconnected locally compact rings are closed. In the paper is given a characterization of locally finite compact rings via identities.



2003 ◽  
Vol 31 (9) ◽  
pp. 4195-4214 ◽  
Author(s):  
Alberto Facchini ◽  
Dolors Herbera ◽  
Iskhak Sakhajev


1976 ◽  
Vol 19 (1) ◽  
pp. 117-119
Author(s):  
H. L. Shapiro ◽  
F. A. Smith

Recently there has been a great deal of interest in extending refinements of locally finite and point finite collections on subsets of certain topological spaces. In particular the first named author showed that a subset S of a topological space X is P-embedded in X if and only if every locally finite cozero-set cover on S has a refinement that can be extended to a locally finite cozero-set cover of X. Since then many authors have studied similar types of embeddings (see [1], [2], [3], [4], [6], [8], [9], [10], [11], and [12]). Since the above characterization of P-embedding is equivalent to extending continuous pseudometrics from the subspace S up to the whole space X, it is natural to wonder when can a locally finite or a point finite open or cozero-set cover on S be extended to a locally finite or point-finite open or cozero-set cover on X.



2013 ◽  
Vol 57 (2) ◽  
pp. 323-338 ◽  
Author(s):  
Adlene Ayadi ◽  
Habib Marzougui

AbstractWe give a complete characterization of a hypercyclic abelian semigroup of matrices on ℂn. For finitely generated semigroups, this characterization is explicit and it is used to determine the minimal number of matrices in normal form over ℂ that form a hypercyclic abelian semigroup on ℂn. In particular, we show that no abelian semigroup generated by n matrices on ℂn can be hypercyclic.



Sign in / Sign up

Export Citation Format

Share Document