scholarly journals On Reasoning about Access to Knowledge

10.29007/z15j ◽  
2020 ◽  
Author(s):  
Yakoub Salhi

Controlling access to knowledge plays a crucial role in many multi-agent systems. In- deed, it is related to different central aspects in interactions among agents such as privacy, security, and cooperation. In this paper, we propose a framework for dealing with access to knowledge that is based on the inference process in classical propositional logic: an agent has access to every piece of knowledge that can be derived from the available knowledge using the classical inference process. We first introduce a basic problem in which an agent has to hide pieces of knowledge, and we show that this problem can be solved through the computation of maximal consistent subsets. In the same way, we also propose a coun- terpart of the previous problem in which an agent has to share pieces of knowledge, and we show that this problem can be solved through the computation of minimal inconsis- tent subsets. Then, we propose a generalization of the previous problem where an agent has to share pieces of knowledge and hide at the same time others. In this context, we introduce several concepts that allow capturing interesting aspects. Finally, we propose a weight-based approach by associating integers with the pieces of knowledge that have to be shared or hidden.

2021 ◽  
Author(s):  
Fabio Aurelio D'Asaro ◽  
Paolo Baldi ◽  
Giuseppe Primiero

Depth-Bounded Boolean Logics (DBBL for short) are well-understood frameworks to model rational agents equipped with limited deductive capabilities. These Logics use a parameter k>=0 to limit the amount of virtual information, i.e., the information that the agent may temporarily assume throughout the deductive process. This restriction brings several advantageous properties over classical Propositional Logic, including polynomial decision procedures for deducibility and refutability. Inspired by DBBL, we propose a limited-depth version of the popular ASP system \clingo, tentatively dubbed k-lingo after the bound k on virtual information. We illustrate the connection between DBBL and ASP through examples involving both proof-theoretical and implementative aspects. The paper concludes with some comments on future work, which include a computational complexity characterization of the system, applications to multi-agent systems and feasible approximations of probability functions.


Author(s):  
Liangda Fang ◽  
Kewen Wang ◽  
Zhe Wang ◽  
Ximing Wen

Modal logics are primary formalisms for multi-agent systems but major reasoning tasks in such logics are intractable, which impedes applications of multi-agent modal logics such as automatic planning. One technique of tackling the intractability is to identify a fragment called a normal form of multiagent logics such that it is expressive but tractable for reasoning tasks such as entailment checking, bounded conjunction transformation and forgetting. For instance, DNF of propositional logic is tractable for these reasoning tasks. In this paper, we first introduce a notion of logical separability and then define a novel disjunctive normal form SDNF for the multiagent logic Kn, which overcomes some shortcomings of existing approaches. In particular, we show that every modal formula in Kn can be equivalently casted as a formula in SDNF, major reasoning tasks tractable in propositional DNF are also tractable in SDNF, and moreover, formulas in SDNF enjoy the property of logical separability. To demonstrate the usefulness of our approach, we apply SDNF in multi-agent epistemic planning. Finally, we extend these results to three more complex multi-agent logics Dn, K45n and KD45n.


Sign in / Sign up

Export Citation Format

Share Document